File size: 3,520 Bytes
5c202cd
 
 
 
 
 
 
 
0d8c862
 
 
 
5c202cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f09a6f
 
5c202cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d8c862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import streamlit as st
import pandas as pd
import geopandas as gpd
from millify import millify
import folium
from PIL import Image
from streamlit_folium import st_folium

APP_TITLE = "Italy Agrifoods Data"
APP_SUB_TITLE = "by Omdena Milan chapter πŸ‘‡ (https://omdena.com/local-chapters/milan-italy-chapter/)"
image = Image.open('data/logo.png')
image=image.resize((100,100))



def display_time_filters(df):
    year_list = list(df['TIME'].unique())
    year_list.sort()
    year = st.selectbox('Year', year_list, len(year_list)-1)
    #st.header(f'{year}')
    return year

def display_product():
    product_list= ['Cereals', 'Vegetables', 'Fruits', 'Olive']
    product = st.selectbox('Agricultural Product',product_list)
    return product 

def display_state_filter(df, Region):
    region_list = [''] + list(df['Region'].unique())
    region_list.sort()
    state_index = region_list.index(Region) if Region and Region in region_list else 0
    return st.selectbox('Region', region_list, state_index)

def display_yield(df, year, region, metric_title):
    df = df[df["TIME"] == year]
    if region:
        df = df[df["Region"] == region]
    total = df['Value'].sum()
    st.metric(metric_title, millify(total))

def display_map(df, year):
    df = df[df["TIME"] == year]
    map = folium.Map(location=[42.3, 13], zoom_start=5,scrollWheelZoom=False, tiles='CartoDB positron')
    gpd_data = gpd.read_file("data/Italy_regions.zip")
    #st.write(gpd_data[gpd_data['NAME_1']=="Valle d'Aosta"])
    #st.write(gpd_data)
    ch = folium.Choropleth(
            geo_data=gpd_data,
            data=df,
            columns=['region_code', 'Value'],
            key_on="feature.properties.ID_1",
            #fill_color='YlGn',
            #highlight=True
    ).add_to(map)
    ch.geojson.add_child(
        folium.features.GeoJsonTooltip(['NAME_1'], labels=False)
    )
    st_map = st_folium(map, width=700, height= 450)
    
    region_name = ''
    if st_map['last_active_drawing']:
        region_name = st_map['last_active_drawing']['properties']['NAME_1']
        if region_name == 'Sicily':
            return 'Sicilia'
        if region_name == 'Apulia':
            return 'Puglia'
    return region_name

def main():
    st.set_page_config(APP_TITLE, layout="wide")
    st.title(APP_TITLE)
    

    image = Image.open('data/logo.png')
    image=image.resize((100,100))

    with st.sidebar:
        logo = st.image(image)
        st.caption(APP_SUB_TITLE)

    #load data
    df_olives = pd.read_csv("data/Italy_regions_with_code_grapes_olives.csv")    
    df_cereals = pd.read_csv("data/Italy_regions_with_code_cereals.csv")
    df_veg = pd.read_csv("data/Italy_regions_with_code_fresh_veg.csv")
    df_fruit = pd.read_csv("data/Italy_regions_with_code_fruit.csv")
    df = df_fruit
    year = ''
    region = ""
    
    

    #st.write(df.shape)
    #st.write(df.head())

    
    product = display_product()
    col1, col2 = st.columns([2,1])
    
    #display map
    with col2:
        #display metric
        year = display_time_filters(df)
        region = display_state_filter(df, region)
        metric_title = f"{product} Harvested Production in Quintals {region} - Italy: {year}"     
        display_yield(df, year, region, metric_title)
    
    with col1:
         region = display_map(df, year)      
        
        
    #st.header('{Header!!!!}')
   
    

    
    #metric_title = f"Harvested Production in Quintals {region} - Italy: {year}" 

if __name__ == "__main__":
    main()