Spaces:
Sleeping
Sleeping
import torch | |
from tqdm.auto import tqdm | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
def load_model_and_tokenizer(model_name): | |
""" | |
load_model_and_tokenizer - a function that loads a model and tokenizer from huggingface | |
Args: | |
model_name (str): the name of the model to load | |
Returns: | |
AutoModelForSeq2SeqLM: the model | |
AutoTokenizer: the tokenizer | |
""" | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_name, | |
low_cpu_mem_usage=True, | |
use_cache=False, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = model.to("cuda") if torch.cuda.is_available() else model | |
return model, tokenizer | |
def summarize_and_score(ids, mask, model, tokenizer, **kwargs): | |
""" | |
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary | |
Args: | |
ids (): the batch of ids | |
mask (): the attention mask for the batch | |
model (): the model to use for summarization | |
tokenizer (): the tokenizer to use for summarization | |
Returns: | |
str: the summary of the batch | |
""" | |
ids = ids[None, :] | |
mask = mask[None, :] | |
input_ids = ids.to("cuda") if torch.cuda.is_available() else ids | |
attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask | |
attention_mask = mask.to("cuda") | |
global_attention_mask = torch.zeros_like(attention_mask) | |
# put global attention on <s> token | |
global_attention_mask[:, 0] = 1 | |
summary_pred_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
output_scores=True, | |
return_dict_in_generate=True, | |
**kwargs | |
) | |
summary = tokenizer.batch_decode( | |
summary_pred_ids.sequences, | |
skip_special_tokens=True, | |
remove_invalid_values=True, | |
) | |
score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4) | |
return summary, score | |
def summarize_via_tokenbatches( | |
input_text:str, | |
model, tokenizer, | |
batch_length=2048, | |
batch_stride=16, | |
**kwargs, | |
): | |
""" | |
summarize_via_tokenbatches - a function that takes a string and returns a summary | |
Args: | |
input_text (str): the text to summarize | |
model (): the model to use for summarization | |
tokenizer (): the tokenizer to use for summarization | |
batch_length (int, optional): the length of each batch. Defaults to 2048. | |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches. | |
Returns: | |
str: the summary | |
""" | |
encoded_input = tokenizer( | |
input_text, | |
padding='max_length', | |
truncation=True, | |
max_length=batch_length, | |
stride=batch_stride, | |
return_overflowing_tokens=True, | |
add_special_tokens =False, | |
return_tensors='pt', | |
) | |
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask | |
gen_summaries = [] | |
pbar = tqdm(total=len(in_id_arr)) | |
for _id, _mask in zip(in_id_arr, att_arr): | |
result, score = summarize_and_score( | |
ids=_id, | |
mask=_mask, | |
model=model, | |
tokenizer=tokenizer, | |
**kwargs, | |
) | |
score = round(float(score),4) | |
_sum = { | |
"input_tokens":_id, | |
"summary":result, | |
"summary_score":score, | |
} | |
gen_summaries.append(_sum) | |
print(f"\t{result[0]}\nScore:\t{score}") | |
pbar.update() | |
pbar.close() | |
return gen_summaries |