import logging import re from pathlib import Path import time import gradio as gr import nltk from cleantext import clean from summarize import load_model_and_tokenizer, summarize_via_tokenbatches from utils import load_examples, truncate_word_count _here = Path(__file__).parent nltk.download("stopwords") # TODO=find where this requirement originates from import transformers transformers.logging.set_verbosity_error() logging.basicConfig() def proc_submission( input_text: str, model_size: str, num_beams, token_batch_length, length_penalty, repetition_penalty, no_repeat_ngram_size, max_input_length: int = 768, ): """ proc_submission - a helper function for the gradio module Parameters ---------- input_text : str, required, the text to be processed max_input_length : int, optional, the maximum length of the input text, default=512 Returns ------- str of HTML, the interactive HTML form for the model """ settings = { "length_penalty": length_penalty, "repetition_penalty": repetition_penalty, "no_repeat_ngram_size": no_repeat_ngram_size, "encoder_no_repeat_ngram_size": 4, "num_beams": num_beams, "min_length": 4, "max_length": int(token_batch_length // 4), "early_stopping": True, "do_sample": False, } st = time.perf_counter() history = {} clean_text = clean(input_text, lower=False) max_input_length = 1024 if model_size == "base" else max_input_length processed = truncate_word_count(clean_text, max_input_length) if processed["was_truncated"]: tr_in = processed["truncated_text"] msg = f"Input text was truncated to {max_input_length} words (based on whitespace)" logging.warning(msg) history["WARNING"] = msg else: tr_in = input_text _summaries = summarize_via_tokenbatches( tr_in, model_sm if model_size == "base" else model, tokenizer_sm if model_size == "base" else tokenizer, batch_length=token_batch_length, **settings, ) sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)] sum_scores = [ f"\n - Section {i}: {round(s['summary_score'],4)}" for i, s in enumerate(_summaries) ] history["Summary Text"] = "
".join(sum_text) history["Summary Scores"] = "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better.

" history["Summary Scores"] += "\n".join(sum_scores) html = "" rt = round((time.perf_counter() - st) / 60, 2) print(f"Runtime: {rt} minutes") html += f"

Runtime: {rt} minutes on CPU

" for name, item in history.items(): html += ( f"

{name}:


{item}

" if "summary" not in name.lower() else f"

{name}:


{item}

" ) html += "" return html if __name__ == "__main__": model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary") model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary") title = "Long-Form Summarization: LED & BookSum" description = "A simple demo of how to use a fine-tuned LED model to summarize long-form text. [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab." gr.Interface( proc_submission, inputs=[ gr.inputs.Textbox( lines=10, label="input text", placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)", ), gr.inputs.Radio( choices=["base", "large"], label="model size", default="large" ), gr.inputs.Slider( minimum=2, maximum=4, label="num_beams", default=2, step=1 ), gr.inputs.Slider( minimum=512, maximum=1024, label="token_batch_length", default=512, step=256, ), gr.inputs.Slider( minimum=0.5, maximum=1.1, label="length_penalty", default=0.7, step=0.05 ), gr.inputs.Slider( minimum=1.0, maximum=5.0, label="repetition_penalty", default=3.5, step=0.1, ), gr.inputs.Slider( minimum=2, maximum=4, label="no_repeat_ngram_size", default=3, step=1 ), ], outputs="html", examples_per_page=2, title=title, description=description, article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.", examples=load_examples(_here / "examples"), cache_examples=True, ).launch()