File size: 14,204 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import torch
import torch.nn as nn

from onmt.modules.stacked_rnn import StackedLSTM, StackedGRU
from onmt.modules import context_gate_factory, GlobalAttention
from onmt.utils.rnn_factory import rnn_factory


class DecoderBase(nn.Module):
    """Abstract class for decoders.

    Args:
        attentional (bool): The decoder returns non-empty attention.
    """

    def __init__(self, attentional=True):
        super(DecoderBase, self).__init__()
        self.attentional = attentional

    @classmethod
    def from_opt(cls, opt, embeddings):
        """Alternate constructor.

        Subclasses should override this method.
        """

        raise NotImplementedError


class RNNDecoderBase(DecoderBase):
    """Base recurrent attention-based decoder class.

    Specifies the interface used by different decoder types
    and required by :class:`~onmt.models.NMTModel`.

    Args:
       rnn_type (str):
          style of recurrent unit to use, one of [RNN, LSTM, GRU, SRU]
       bidirectional_encoder (bool) : use with a bidirectional encoder
       num_layers (int) : number of stacked layers
       hidden_size (int) : hidden size of each layer
       attn_type (str) : see :class:`~onmt.modules.GlobalAttention`
       attn_func (str) : see :class:`~onmt.modules.GlobalAttention`
       coverage_attn (str): see :class:`~onmt.modules.GlobalAttention`
       context_gate (str): see :class:`~onmt.modules.ContextGate`
       copy_attn (bool): setup a separate copy attention mechanism
       dropout (float) : dropout value for :class:`torch.nn.Dropout`
       embeddings (onmt.modules.Embeddings): embedding module to use
       reuse_copy_attn (bool): reuse the attention for copying
       copy_attn_type (str): The copy attention style. See
        :class:`~onmt.modules.GlobalAttention`.
    """

    def __init__(
        self,
        rnn_type,
        bidirectional_encoder,
        num_layers,
        hidden_size,
        attn_type="general",
        attn_func="softmax",
        coverage_attn=False,
        context_gate=None,
        copy_attn=False,
        dropout=0.0,
        embeddings=None,
        reuse_copy_attn=False,
        copy_attn_type="general",
    ):
        super(RNNDecoderBase, self).__init__(
            attentional=attn_type != "none" and attn_type is not None
        )

        self.bidirectional_encoder = bidirectional_encoder
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.embeddings = embeddings
        self.dropout = nn.Dropout(dropout)

        # Decoder state
        self.state = {}

        # Build the RNN.
        self.rnn = self._build_rnn(
            rnn_type,
            input_size=self._input_size,
            hidden_size=hidden_size,
            num_layers=num_layers,
            dropout=dropout,
        )

        # Set up the context gate.
        self.context_gate = None
        if context_gate is not None:
            self.context_gate = context_gate_factory(
                context_gate, self._input_size, hidden_size, hidden_size, hidden_size
            )

        # Set up the standard attention.
        self._coverage = coverage_attn
        if not self.attentional:
            if self._coverage:
                raise ValueError("Cannot use coverage term with no attention.")
            self.attn = None
        else:
            self.attn = GlobalAttention(
                hidden_size,
                coverage=coverage_attn,
                attn_type=attn_type,
                attn_func=attn_func,
            )

        if copy_attn and not reuse_copy_attn:
            if copy_attn_type == "none" or copy_attn_type is None:
                raise ValueError("Cannot use copy_attn with copy_attn_type none")
            self.copy_attn = GlobalAttention(
                hidden_size, attn_type=copy_attn_type, attn_func=attn_func
            )
        else:
            self.copy_attn = None

        self._reuse_copy_attn = reuse_copy_attn and copy_attn
        if self._reuse_copy_attn and not self.attentional:
            raise ValueError("Cannot reuse copy attention with no attention.")

    @classmethod
    def from_opt(cls, opt, embeddings):
        """Alternate constructor."""
        return cls(
            opt.rnn_type,
            opt.brnn,
            opt.dec_layers,
            opt.dec_hid_size,
            opt.global_attention,
            opt.global_attention_function,
            opt.coverage_attn,
            opt.context_gate,
            opt.copy_attn,
            opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
            embeddings,
            opt.reuse_copy_attn,
            opt.copy_attn_type,
        )

    def init_state(self, src, _, enc_final_hs):
        """Initialize decoder state with last state of the encoder."""

        def _fix_enc_hidden(hidden):
            # The encoder hidden is  (layers*directions) x batch x dim.
            # We need to convert it to layers x batch x (directions*dim).
            if self.bidirectional_encoder:
                hidden = torch.cat(
                    [hidden[0 : hidden.size(0) : 2], hidden[1 : hidden.size(0) : 2]], 2
                )
            return hidden

        if isinstance(enc_final_hs, tuple):  # LSTM
            self.state["hidden"] = tuple(
                _fix_enc_hidden(enc_hid) for enc_hid in enc_final_hs
            )
        else:  # GRU
            self.state["hidden"] = (_fix_enc_hidden(enc_final_hs),)

        # Init the input feed.
        batch_size = self.state["hidden"][0].size(1)

        h_size = (batch_size, self.hidden_size)
        self.state["input_feed"] = (
            self.state["hidden"][0].data.new(*h_size).zero_().unsqueeze(0)
        )

        self.state["coverage"] = None

    def map_state(self, fn):
        self.state["hidden"] = tuple(fn(h, 1) for h in self.state["hidden"])
        self.state["input_feed"] = fn(self.state["input_feed"], 1)
        if self._coverage and self.state["coverage"] is not None:
            self.state["coverage"] = fn(self.state["coverage"], 1)

    def detach_state(self):
        self.state["hidden"] = tuple(h.detach() for h in self.state["hidden"])
        self.state["input_feed"] = self.state["input_feed"].detach()
        if self._coverage and self.state["coverage"] is not None:
            self.state["coverage"] = self.state["coverage"].detach()

    def forward(self, tgt, enc_out, src_len=None, step=None, **kwargs):
        """
        Args:
            tgt (LongTensor): sequences of padded tokens
                 ``(batch, tgt_len, nfeats)``.
            enc_out (FloatTensor): vectors from the encoder
                 ``(batch, src_len, hidden)``.
            src_len (LongTensor): the padded source lengths
                ``(batch,)``.

        Returns:
            (FloatTensor, dict[str, FloatTensor]):

            * dec_outs: output from the decoder (after attn)
              ``(batch, tgt_len, hidden)``.
            * attns: distribution over src at each tgt
              ``(batch, tgt_len, src_len)``.
        """
        dec_state, dec_outs, attns = self._run_forward_pass(
            tgt, enc_out, src_len=src_len
        )

        # Update the state with the result.
        if not isinstance(dec_state, tuple):
            dec_state = (dec_state,)
        self.state["hidden"] = dec_state

        # Concatenates sequence of tensors along a new dimension.
        # NOTE: v0.3 to 0.4: dec_outs / attns[*] may not be list
        #       (in particular in case of SRU) it was not raising error in 0.3
        #       since stack(Variable) was allowed.
        #       In 0.4, SRU returns a tensor that shouldn't be stacke
        if type(dec_outs) == list:
            dec_outs = torch.stack(dec_outs, dim=1)
            for k in attns:
                if type(attns[k]) == list:
                    attns[k] = torch.stack(attns[k])

        self.state["input_feed"] = dec_outs[:, -1, :].unsqueeze(0)
        self.state["coverage"] = None
        if "coverage" in attns:
            self.state["coverage"] = attns["coverage"][-1, :, :].unsqueeze(0)

        return dec_outs, attns

    def update_dropout(self, dropout, attention_dropout=None):
        self.dropout.p = dropout
        self.embeddings.update_dropout(dropout)


class StdRNNDecoder(RNNDecoderBase):
    """Standard fully batched RNN decoder with attention.

    Faster implementation, uses CuDNN for implementation.
    See :class:`~onmt.decoders.decoder.RNNDecoderBase` for options.


    Based around the approach from
    "Neural Machine Translation By Jointly Learning To Align and Translate"
    :cite:`Bahdanau2015`


    Implemented without input_feeding and currently with no `coverage_attn`
    or `copy_attn` support.
    """

    def _run_forward_pass(self, tgt, enc_out, src_len=None):
        """
        Private helper for running the specific RNN forward pass.
        Must be overriden by all subclasses.

        Args:
            tgt (LongTensor): a sequence of input tokens tensors
                ``(batch, tgt_len, nfeats)``.
            enc_out (FloatTensor): output(tensor sequence) from the
                encoder RNN of size ``(batch, src_len, hidden_size)``.
            src_len (LongTensor): the source enc_out lengths.

        Returns:
            (Tensor, List[FloatTensor], Dict[str, List[FloatTensor]):

            * dec_state: final hidden state from the decoder.
            * dec_outs: an array of output of every time
              step from the decoder.
            * attns: a dictionary of different
              type of attention Tensor array of every time
              step from the decoder.
        """

        assert self.copy_attn is None  # TODO, no support yet.
        assert not self._coverage  # TODO, no support yet.

        attns = {}
        emb = self.embeddings(tgt)

        if isinstance(self.rnn, nn.GRU):
            rnn_out, dec_state = self.rnn(emb, self.state["hidden"][0])
        else:
            rnn_out, dec_state = self.rnn(emb, self.state["hidden"])

        tgt_batch, tgt_len, _ = tgt.size()

        # Calculate the attention.
        if not self.attentional:
            dec_outs = rnn_out
        else:
            dec_outs, p_attn = self.attn(rnn_out, enc_out, src_len=src_len)
            attns["std"] = p_attn

        # Calculate the context gate.
        if self.context_gate is not None:
            dec_outs = self.context_gate(
                emb.view(-1, emb.size(2)),
                rnn_out.view(-1, rnn_out.size(2)),
                dec_outs.view(-1, dec_outs.size(2)),
            )
            dec_outs = dec_outs.view(tgt_batch, tgt_len, self.hidden_size)

        dec_outs = self.dropout(dec_outs)

        return dec_state, dec_outs, attns

    def _build_rnn(self, rnn_type, **kwargs):
        rnn, _ = rnn_factory(rnn_type, **kwargs)
        return rnn

    @property
    def _input_size(self):
        return self.embeddings.embedding_size


class InputFeedRNNDecoder(RNNDecoderBase):
    """Input feeding based decoder.

    See :class:`~onmt.decoders.decoder.RNNDecoderBase` for options.

    Based around the input feeding approach from
    "Effective Approaches to Attention-based Neural Machine Translation"
    :cite:`Luong2015`

    """

    def _run_forward_pass(self, tgt, enc_out, src_len=None):
        """
        See StdRNNDecoder._run_forward_pass() for description
        of arguments and return values.
        """
        # Additional args check.
        input_feed = self.state["input_feed"].squeeze(0)

        dec_outs = []
        attns = {}
        if self.attn is not None:
            attns["std"] = []
        if self.copy_attn is not None or self._reuse_copy_attn:
            attns["copy"] = []
        if self._coverage:
            attns["coverage"] = []

        emb = self.embeddings(tgt)
        assert emb.dim() == 3  # batch x len x embedding_dim

        dec_state = self.state["hidden"]

        coverage = (
            self.state["coverage"].squeeze(0)
            if self.state["coverage"] is not None
            else None
        )

        # Input feed concatenates hidden state with
        # input at every time step.
        for emb_t in emb.split(1, dim=1):
            dec_in = torch.cat([emb_t.squeeze(1), input_feed], 1)
            rnn_out, dec_state = self.rnn(dec_in, dec_state)
            if self.attentional:
                dec_out, p_attn = self.attn(rnn_out, enc_out, src_len=src_len)
                attns["std"].append(p_attn)
            else:
                dec_out = rnn_out
            if self.context_gate is not None:
                # TODO: context gate should be employed
                # instead of second RNN transform.
                dec_out = self.context_gate(dec_in, rnn_out, dec_out)
            dec_out = self.dropout(dec_out)
            input_feed = dec_out

            dec_outs += [dec_out]

            # Update the coverage attention.
            # attns["coverage"] is actually c^(t+1) of See et al(2017)
            # 1-index shifted
            if self._coverage:
                coverage = p_attn if coverage is None else p_attn + coverage
                attns["coverage"] += [coverage]

            if self.copy_attn is not None:
                _, copy_attn = self.copy_attn(dec_out, enc_out)
                attns["copy"] += [copy_attn]
            elif self._reuse_copy_attn:
                attns["copy"] = attns["std"]

        return dec_state, dec_outs, attns

    def _build_rnn(self, rnn_type, input_size, hidden_size, num_layers, dropout):
        assert rnn_type != "SRU", (
            "SRU doesn't support input feed! " "Please set -input_feed 0!"
        )
        stacked_cell = StackedLSTM if rnn_type == "LSTM" else StackedGRU
        return stacked_cell(num_layers, input_size, hidden_size, dropout)

    @property
    def _input_size(self):
        """Using input feed by concatenating input with attention vectors."""
        return self.embeddings.embedding_size + self.hidden_size

    def update_dropout(self, dropout, attention_dropout=None):
        self.dropout.p = dropout
        self.rnn.dropout.p = dropout
        self.embeddings.update_dropout(dropout)