File size: 14,204 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import torch
import torch.nn as nn
from onmt.modules.stacked_rnn import StackedLSTM, StackedGRU
from onmt.modules import context_gate_factory, GlobalAttention
from onmt.utils.rnn_factory import rnn_factory
class DecoderBase(nn.Module):
"""Abstract class for decoders.
Args:
attentional (bool): The decoder returns non-empty attention.
"""
def __init__(self, attentional=True):
super(DecoderBase, self).__init__()
self.attentional = attentional
@classmethod
def from_opt(cls, opt, embeddings):
"""Alternate constructor.
Subclasses should override this method.
"""
raise NotImplementedError
class RNNDecoderBase(DecoderBase):
"""Base recurrent attention-based decoder class.
Specifies the interface used by different decoder types
and required by :class:`~onmt.models.NMTModel`.
Args:
rnn_type (str):
style of recurrent unit to use, one of [RNN, LSTM, GRU, SRU]
bidirectional_encoder (bool) : use with a bidirectional encoder
num_layers (int) : number of stacked layers
hidden_size (int) : hidden size of each layer
attn_type (str) : see :class:`~onmt.modules.GlobalAttention`
attn_func (str) : see :class:`~onmt.modules.GlobalAttention`
coverage_attn (str): see :class:`~onmt.modules.GlobalAttention`
context_gate (str): see :class:`~onmt.modules.ContextGate`
copy_attn (bool): setup a separate copy attention mechanism
dropout (float) : dropout value for :class:`torch.nn.Dropout`
embeddings (onmt.modules.Embeddings): embedding module to use
reuse_copy_attn (bool): reuse the attention for copying
copy_attn_type (str): The copy attention style. See
:class:`~onmt.modules.GlobalAttention`.
"""
def __init__(
self,
rnn_type,
bidirectional_encoder,
num_layers,
hidden_size,
attn_type="general",
attn_func="softmax",
coverage_attn=False,
context_gate=None,
copy_attn=False,
dropout=0.0,
embeddings=None,
reuse_copy_attn=False,
copy_attn_type="general",
):
super(RNNDecoderBase, self).__init__(
attentional=attn_type != "none" and attn_type is not None
)
self.bidirectional_encoder = bidirectional_encoder
self.num_layers = num_layers
self.hidden_size = hidden_size
self.embeddings = embeddings
self.dropout = nn.Dropout(dropout)
# Decoder state
self.state = {}
# Build the RNN.
self.rnn = self._build_rnn(
rnn_type,
input_size=self._input_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
)
# Set up the context gate.
self.context_gate = None
if context_gate is not None:
self.context_gate = context_gate_factory(
context_gate, self._input_size, hidden_size, hidden_size, hidden_size
)
# Set up the standard attention.
self._coverage = coverage_attn
if not self.attentional:
if self._coverage:
raise ValueError("Cannot use coverage term with no attention.")
self.attn = None
else:
self.attn = GlobalAttention(
hidden_size,
coverage=coverage_attn,
attn_type=attn_type,
attn_func=attn_func,
)
if copy_attn and not reuse_copy_attn:
if copy_attn_type == "none" or copy_attn_type is None:
raise ValueError("Cannot use copy_attn with copy_attn_type none")
self.copy_attn = GlobalAttention(
hidden_size, attn_type=copy_attn_type, attn_func=attn_func
)
else:
self.copy_attn = None
self._reuse_copy_attn = reuse_copy_attn and copy_attn
if self._reuse_copy_attn and not self.attentional:
raise ValueError("Cannot reuse copy attention with no attention.")
@classmethod
def from_opt(cls, opt, embeddings):
"""Alternate constructor."""
return cls(
opt.rnn_type,
opt.brnn,
opt.dec_layers,
opt.dec_hid_size,
opt.global_attention,
opt.global_attention_function,
opt.coverage_attn,
opt.context_gate,
opt.copy_attn,
opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
embeddings,
opt.reuse_copy_attn,
opt.copy_attn_type,
)
def init_state(self, src, _, enc_final_hs):
"""Initialize decoder state with last state of the encoder."""
def _fix_enc_hidden(hidden):
# The encoder hidden is (layers*directions) x batch x dim.
# We need to convert it to layers x batch x (directions*dim).
if self.bidirectional_encoder:
hidden = torch.cat(
[hidden[0 : hidden.size(0) : 2], hidden[1 : hidden.size(0) : 2]], 2
)
return hidden
if isinstance(enc_final_hs, tuple): # LSTM
self.state["hidden"] = tuple(
_fix_enc_hidden(enc_hid) for enc_hid in enc_final_hs
)
else: # GRU
self.state["hidden"] = (_fix_enc_hidden(enc_final_hs),)
# Init the input feed.
batch_size = self.state["hidden"][0].size(1)
h_size = (batch_size, self.hidden_size)
self.state["input_feed"] = (
self.state["hidden"][0].data.new(*h_size).zero_().unsqueeze(0)
)
self.state["coverage"] = None
def map_state(self, fn):
self.state["hidden"] = tuple(fn(h, 1) for h in self.state["hidden"])
self.state["input_feed"] = fn(self.state["input_feed"], 1)
if self._coverage and self.state["coverage"] is not None:
self.state["coverage"] = fn(self.state["coverage"], 1)
def detach_state(self):
self.state["hidden"] = tuple(h.detach() for h in self.state["hidden"])
self.state["input_feed"] = self.state["input_feed"].detach()
if self._coverage and self.state["coverage"] is not None:
self.state["coverage"] = self.state["coverage"].detach()
def forward(self, tgt, enc_out, src_len=None, step=None, **kwargs):
"""
Args:
tgt (LongTensor): sequences of padded tokens
``(batch, tgt_len, nfeats)``.
enc_out (FloatTensor): vectors from the encoder
``(batch, src_len, hidden)``.
src_len (LongTensor): the padded source lengths
``(batch,)``.
Returns:
(FloatTensor, dict[str, FloatTensor]):
* dec_outs: output from the decoder (after attn)
``(batch, tgt_len, hidden)``.
* attns: distribution over src at each tgt
``(batch, tgt_len, src_len)``.
"""
dec_state, dec_outs, attns = self._run_forward_pass(
tgt, enc_out, src_len=src_len
)
# Update the state with the result.
if not isinstance(dec_state, tuple):
dec_state = (dec_state,)
self.state["hidden"] = dec_state
# Concatenates sequence of tensors along a new dimension.
# NOTE: v0.3 to 0.4: dec_outs / attns[*] may not be list
# (in particular in case of SRU) it was not raising error in 0.3
# since stack(Variable) was allowed.
# In 0.4, SRU returns a tensor that shouldn't be stacke
if type(dec_outs) == list:
dec_outs = torch.stack(dec_outs, dim=1)
for k in attns:
if type(attns[k]) == list:
attns[k] = torch.stack(attns[k])
self.state["input_feed"] = dec_outs[:, -1, :].unsqueeze(0)
self.state["coverage"] = None
if "coverage" in attns:
self.state["coverage"] = attns["coverage"][-1, :, :].unsqueeze(0)
return dec_outs, attns
def update_dropout(self, dropout, attention_dropout=None):
self.dropout.p = dropout
self.embeddings.update_dropout(dropout)
class StdRNNDecoder(RNNDecoderBase):
"""Standard fully batched RNN decoder with attention.
Faster implementation, uses CuDNN for implementation.
See :class:`~onmt.decoders.decoder.RNNDecoderBase` for options.
Based around the approach from
"Neural Machine Translation By Jointly Learning To Align and Translate"
:cite:`Bahdanau2015`
Implemented without input_feeding and currently with no `coverage_attn`
or `copy_attn` support.
"""
def _run_forward_pass(self, tgt, enc_out, src_len=None):
"""
Private helper for running the specific RNN forward pass.
Must be overriden by all subclasses.
Args:
tgt (LongTensor): a sequence of input tokens tensors
``(batch, tgt_len, nfeats)``.
enc_out (FloatTensor): output(tensor sequence) from the
encoder RNN of size ``(batch, src_len, hidden_size)``.
src_len (LongTensor): the source enc_out lengths.
Returns:
(Tensor, List[FloatTensor], Dict[str, List[FloatTensor]):
* dec_state: final hidden state from the decoder.
* dec_outs: an array of output of every time
step from the decoder.
* attns: a dictionary of different
type of attention Tensor array of every time
step from the decoder.
"""
assert self.copy_attn is None # TODO, no support yet.
assert not self._coverage # TODO, no support yet.
attns = {}
emb = self.embeddings(tgt)
if isinstance(self.rnn, nn.GRU):
rnn_out, dec_state = self.rnn(emb, self.state["hidden"][0])
else:
rnn_out, dec_state = self.rnn(emb, self.state["hidden"])
tgt_batch, tgt_len, _ = tgt.size()
# Calculate the attention.
if not self.attentional:
dec_outs = rnn_out
else:
dec_outs, p_attn = self.attn(rnn_out, enc_out, src_len=src_len)
attns["std"] = p_attn
# Calculate the context gate.
if self.context_gate is not None:
dec_outs = self.context_gate(
emb.view(-1, emb.size(2)),
rnn_out.view(-1, rnn_out.size(2)),
dec_outs.view(-1, dec_outs.size(2)),
)
dec_outs = dec_outs.view(tgt_batch, tgt_len, self.hidden_size)
dec_outs = self.dropout(dec_outs)
return dec_state, dec_outs, attns
def _build_rnn(self, rnn_type, **kwargs):
rnn, _ = rnn_factory(rnn_type, **kwargs)
return rnn
@property
def _input_size(self):
return self.embeddings.embedding_size
class InputFeedRNNDecoder(RNNDecoderBase):
"""Input feeding based decoder.
See :class:`~onmt.decoders.decoder.RNNDecoderBase` for options.
Based around the input feeding approach from
"Effective Approaches to Attention-based Neural Machine Translation"
:cite:`Luong2015`
"""
def _run_forward_pass(self, tgt, enc_out, src_len=None):
"""
See StdRNNDecoder._run_forward_pass() for description
of arguments and return values.
"""
# Additional args check.
input_feed = self.state["input_feed"].squeeze(0)
dec_outs = []
attns = {}
if self.attn is not None:
attns["std"] = []
if self.copy_attn is not None or self._reuse_copy_attn:
attns["copy"] = []
if self._coverage:
attns["coverage"] = []
emb = self.embeddings(tgt)
assert emb.dim() == 3 # batch x len x embedding_dim
dec_state = self.state["hidden"]
coverage = (
self.state["coverage"].squeeze(0)
if self.state["coverage"] is not None
else None
)
# Input feed concatenates hidden state with
# input at every time step.
for emb_t in emb.split(1, dim=1):
dec_in = torch.cat([emb_t.squeeze(1), input_feed], 1)
rnn_out, dec_state = self.rnn(dec_in, dec_state)
if self.attentional:
dec_out, p_attn = self.attn(rnn_out, enc_out, src_len=src_len)
attns["std"].append(p_attn)
else:
dec_out = rnn_out
if self.context_gate is not None:
# TODO: context gate should be employed
# instead of second RNN transform.
dec_out = self.context_gate(dec_in, rnn_out, dec_out)
dec_out = self.dropout(dec_out)
input_feed = dec_out
dec_outs += [dec_out]
# Update the coverage attention.
# attns["coverage"] is actually c^(t+1) of See et al(2017)
# 1-index shifted
if self._coverage:
coverage = p_attn if coverage is None else p_attn + coverage
attns["coverage"] += [coverage]
if self.copy_attn is not None:
_, copy_attn = self.copy_attn(dec_out, enc_out)
attns["copy"] += [copy_attn]
elif self._reuse_copy_attn:
attns["copy"] = attns["std"]
return dec_state, dec_outs, attns
def _build_rnn(self, rnn_type, input_size, hidden_size, num_layers, dropout):
assert rnn_type != "SRU", (
"SRU doesn't support input feed! " "Please set -input_feed 0!"
)
stacked_cell = StackedLSTM if rnn_type == "LSTM" else StackedGRU
return stacked_cell(num_layers, input_size, hidden_size, dropout)
@property
def _input_size(self):
"""Using input feed by concatenating input with attention vectors."""
return self.embeddings.embedding_size + self.hidden_size
def update_dropout(self, dropout, attention_dropout=None):
self.dropout.p = dropout
self.rnn.dropout.p = dropout
self.embeddings.update_dropout(dropout)
|