File size: 12,967 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import torch
from copy import deepcopy
from onmt.utils.misc import tile
class DecodeStrategy(object):
"""Base class for generation strategies.
Args:
pad (int): Magic integer in output vocab.
bos (int): Magic integer in output vocab.
eos (int): Magic integer in output vocab.
unk (int): Magic integer in output vocab.
start (int): Magic integer in output vocab.
batch_size (int): Current batch size.
parallel_paths (int): Decoding strategies like beam search
use parallel paths. Each batch is repeated ``parallel_paths``
times in relevant state tensors.
min_length (int): Shortest acceptable generation, not counting
begin-of-sentence or end-of-sentence.
max_length (int): Longest acceptable sequence, not counting
begin-of-sentence (presumably there has been no EOS
yet if max_length is used as a cutoff).
ban_unk_token (Boolean): Whether unk token is forbidden
block_ngram_repeat (int): Block beams where
``block_ngram_repeat``-grams repeat.
exclusion_tokens (set[int]): If a gram contains any of these
tokens, it may repeat.
return_attention (bool): Whether to work with attention too. If this
is true, it is assumed that the decoder is attentional.
Attributes:
pad (int): See above.
bos (int): See above.
eos (int): See above.
unk (int): See above.
start (int): See above.
predictions (list[list[LongTensor]]): For each batch, holds a
list of beam prediction sequences.
scores (list[list[FloatTensor]]): For each batch, holds a
list of scores.
attention (list[list[FloatTensor or list[]]]): For each
batch, holds a list of attention sequence tensors
(or empty lists) having shape ``(step, inp_seq_len)`` where
``inp_seq_len`` is the length of the sample (not the max
length of all inp seqs).
alive_seq (LongTensor): Shape ``(B x parallel_paths, step)``.
This sequence grows in the ``step`` axis on each call to
:func:``advance()``.
is_finished (ByteTensor or NoneType): Shape ``(B, parallel_paths)``.
Initialized to ``None``.
alive_attn (FloatTensor or NoneType): If tensor, shape is
``(step, B x parallel_paths, inp_seq_len)``, where ``inp_seq_len``
is the (max) length of the input sequence.
target_prefix (LongTensor or NoneType): If tensor, shape is
``(B x parallel_paths, prefix_seq_len)``, where ``prefix_seq_len``
is the (max) length of the pre-fixed prediction.
min_length (int): See above.
max_length (int): See above.
ban_unk_token (Boolean): See above.
block_ngram_repeat (int): See above.
exclusion_tokens (set[int]): See above.
return_attention (bool): See above.
done (bool): See above."""
def __init__(
self,
pad,
bos,
eos,
unk,
start,
batch_size,
parallel_paths,
global_scorer,
min_length,
block_ngram_repeat,
exclusion_tokens,
return_attention,
max_length,
ban_unk_token,
):
# magic indices
self.pad = pad
self.bos = bos
self.eos = eos
self.unk = unk
self.start = start
self.batch_size = batch_size
self.parallel_paths = parallel_paths
self.global_scorer = global_scorer
# result caching
self.predictions = [[] for _ in range(batch_size)]
self.scores = [[] for _ in range(batch_size)]
self.attention = [[] for _ in range(batch_size)]
self.hypotheses = [[] for _ in range(batch_size)]
self.alive_attn = None
self.min_length = min_length
self.max_length = max_length
self.ban_unk_token = ban_unk_token
self.block_ngram_repeat = block_ngram_repeat
n_paths = batch_size * parallel_paths
self.forbidden_tokens = [dict() for _ in range(n_paths)]
self.exclusion_tokens = exclusion_tokens
self.return_attention = return_attention
self.done = False
def get_device_from_enc_out(self, enc_out):
if isinstance(enc_out, tuple):
mb_device = enc_out[0].device
else:
mb_device = enc_out.device
return mb_device
def initialize_tile(self, enc_out, src_len, src_map=None, target_prefix=None):
def fn_map_state(state, dim):
return tile(state, self.beam_size, dim=dim)
if isinstance(enc_out, tuple):
enc_out = tuple(tile(x, self.beam_size, dim=0) for x in enc_out)
elif enc_out is not None:
enc_out = tile(enc_out, self.beam_size, dim=0)
if src_map is not None:
src_map = tile(src_map, self.beam_size, dim=0)
self.src_len = tile(src_len, self.beam_size)
if target_prefix is not None:
target_prefix = tile(target_prefix, self.beam_size, dim=0)
return fn_map_state, enc_out, src_map, target_prefix
def initialize(
self, enc_out, src_len, src_map=None, device=None, target_prefix=None
):
"""DecodeStrategy subclasses should override :func:`initialize()`.
`initialize` should be called before all actions.
used to prepare necessary ingredients for decode."""
if device is None:
device = torch.device("cpu")
# Here we set the decoder to start with self.start (BOS or EOS)
self.alive_seq = torch.full(
[self.batch_size * self.parallel_paths, 1],
self.start,
dtype=torch.long,
device=device,
)
self.is_finished = torch.zeros(
[self.batch_size, self.parallel_paths], dtype=torch.uint8, device=device
)
if target_prefix is not None:
batch_size, seq_len, n_feats = target_prefix.size()
assert (
batch_size == self.batch_size * self.parallel_paths
), "forced target_prefix should've extend to same number of path!"
target_prefix_words = target_prefix[:, :, 0] # no features
target_prefix = target_prefix_words[:, 1:] # remove bos
# fix length constraint and remove eos from count
prefix_non_pad = target_prefix.ne(self.pad).sum(dim=-1).tolist()
self.max_length += max(prefix_non_pad) - 1
self.min_length += min(prefix_non_pad) - 1
self.target_prefix = target_prefix # NOTE: forced prefix words
return None, enc_out, src_len, src_map
def __len__(self):
return self.alive_seq.shape[1]
def ensure_min_length(self, log_probs):
if len(self) <= self.min_length:
log_probs[:, self.eos] = -1e20
def ensure_unk_removed(self, log_probs):
if self.ban_unk_token:
log_probs[:, self.unk] = -1e20
def ensure_max_length(self):
# add one to account for BOS. Don't account for EOS because hitting
# this implies it hasn't been found.
if len(self) == self.max_length + 1:
self.is_finished.fill_(1)
def block_ngram_repeats(self, log_probs):
"""We prevent the beam from going in any direction that would repeat
any ngram of size <block_ngram_repeat> more thant once.
The way we do it: we maintain a list of all ngrams of size
<block_ngram_repeat> that is updated each time the beam advances, and
manually put any token that would lead to a repeated ngram to 0.
This improves on the previous version's complexity:
- previous version's complexity: batch_size * beam_size * len(self)
- current version's complexity: batch_size * beam_size
This improves on the previous version's accuracy;
- Previous version blocks the whole beam, whereas here we only
block specific tokens.
- Before the translation would fail when all beams contained
repeated ngrams. This is sure to never happen here."""
# we don't block nothing if the user doesn't want it
if self.block_ngram_repeat <= 0:
return
# we can't block nothing beam's too short
if len(self) < self.block_ngram_repeat:
return
n = self.block_ngram_repeat - 1
for path_idx in range(self.alive_seq.shape[0]):
# we check paths one by one
current_ngram = tuple(self.alive_seq[path_idx, -n:].tolist())
forbidden_tokens = self.forbidden_tokens[path_idx].get(current_ngram, None)
if forbidden_tokens is not None:
log_probs[path_idx, list(forbidden_tokens)] = -10e20
def maybe_update_forbidden_tokens(self):
"""We complete and reorder the list of forbidden_tokens"""
# we don't forbid nothing if the user doesn't want it
if self.block_ngram_repeat <= 0:
return
# we can't forbid nothing if beam's too short
if len(self) < self.block_ngram_repeat:
return
n = self.block_ngram_repeat
forbidden_tokens = list()
for path_idx, seq in zip(self.select_indices, self.alive_seq):
# Reordering forbidden_tokens following beam selection
# We rebuild a dict to ensure we get the value and not the pointer
forbidden_tokens.append(deepcopy(self.forbidden_tokens[path_idx]))
# Grabing the newly selected tokens and associated ngram
current_ngram = tuple(seq[-n:].tolist())
# skip the blocking if any token in current_ngram is excluded
if set(current_ngram) & self.exclusion_tokens:
continue
forbidden_tokens[-1].setdefault(current_ngram[:-1], set())
forbidden_tokens[-1][current_ngram[:-1]].add(current_ngram[-1])
self.forbidden_tokens = forbidden_tokens
def target_prefixing(self, log_probs):
"""Fix the first part of predictions with `self.target_prefix`.
Args:
log_probs (FloatTensor): logits of size ``(B, vocab_size)``.
Returns:
log_probs (FloatTensor): modified logits in ``(B, vocab_size)``.
"""
_B, vocab_size = log_probs.size()
step = len(self)
if self.target_prefix is not None and step <= self.target_prefix.size(1):
pick_idx = self.target_prefix[:, step - 1].tolist() # (B)
pick_coo = [
[path_i, pick]
for path_i, pick in enumerate(pick_idx)
if pick not in [self.eos, self.pad]
]
mask_pathid = [
path_i
for path_i, pick in enumerate(pick_idx)
if pick in [self.eos, self.pad]
]
if len(pick_coo) > 0:
pick_coo = torch.tensor(pick_coo).to(self.target_prefix)
pick_fill_value = torch.ones([pick_coo.size(0)], dtype=log_probs.dtype)
# pickups: Tensor where specified index were set to 1, others 0
pickups = torch.sparse_coo_tensor(
pick_coo.t(),
pick_fill_value,
size=log_probs.size(),
device=log_probs.device,
).to_dense()
# dropdowns: opposite of pickups, 1 for those shouldn't pick
dropdowns = torch.ones_like(pickups) - pickups
if len(mask_pathid) > 0:
path_mask = torch.zeros(_B).to(self.target_prefix)
path_mask[mask_pathid] = 1
path_mask = path_mask.unsqueeze(1).to(dtype=bool)
dropdowns = dropdowns.masked_fill(path_mask, 0)
# Minus dropdowns to log_probs making probabilities of
# unspecified index close to 0
log_probs -= 10000 * dropdowns
return log_probs
def maybe_update_target_prefix(self, select_index):
"""We update / reorder `target_prefix` for alive path."""
if self.target_prefix is None:
return
# prediction step have surpass length of given target_prefix,
# no need to further change this attr
if len(self) > self.target_prefix.size(1):
return
self.target_prefix = self.target_prefix.index_select(0, select_index)
def advance(self, log_probs, attn):
"""DecodeStrategy subclasses should override :func:`advance()`.
Advance is used to update ``self.alive_seq``, ``self.is_finished``,
and, when appropriate, ``self.alive_attn``.
"""
raise NotImplementedError()
def update_finished(self):
"""DecodeStrategy subclasses should override :func:`update_finished()`.
``update_finished`` is used to update ``self.predictions``,
``self.scores``, and other "output" attributes.
"""
raise NotImplementedError()
|