File size: 21,958 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
"""
This is the loadable seq2seq trainer library that is
in charge of training details, loss compute, and statistics.
See train.py for a use case of this library.
Note: To make this a general library, we implement *only*
mechanism things here(i.e. what to do), and leave the strategy
things to users(i.e. how to do it). Also see train.py(one of the
users of this library) for the strategy things we do.
"""
import time
import sys
import torch
import traceback
import onmt.utils
from onmt.utils.loss import LossCompute
from onmt.utils.logging import logger
from onmt.utils.scoring_utils import ScoringPreparator
from onmt.scorers import get_scorers_cls, build_scorers
def build_trainer(opt, device_id, model, vocabs, optim, model_saver=None):
"""
Simplify `Trainer` creation based on user `opt`s*
Args:
opt (:obj:`Namespace`): user options (usually from argument parsing)
model (:obj:`onmt.models.NMTModel`): the model to train
fields (dict): dict of fields
optim (:obj:`onmt.utils.Optimizer`): optimizer used during training
data_type (str): string describing the type of data
e.g. "text"
model_saver(:obj:`onmt.models.ModelSaverBase`): the utility object
used to save the model
"""
train_loss = LossCompute.from_opts(opt, model, vocabs["tgt"])
valid_loss = LossCompute.from_opts(opt, model, vocabs["tgt"], train=False)
scoring_preparator = ScoringPreparator(vocabs=vocabs, opt=opt)
validset_transforms = opt.data.get("valid", {}).get("transforms", None)
if validset_transforms:
scoring_preparator.warm_up(validset_transforms)
scorers_cls = get_scorers_cls(opt.valid_metrics)
valid_scorers = build_scorers(opt, scorers_cls)
trunc_size = opt.truncated_decoder # Badly named...
norm_method = opt.normalization
accum_count = opt.accum_count
accum_steps = opt.accum_steps
n_gpu = opt.world_size
parallel_mode = opt.parallel_mode
average_decay = opt.average_decay
average_every = opt.average_every
dropout = opt.dropout
attention_dropout = opt.attention_dropout
dropout_steps = opt.dropout_steps
zero_out_prompt_loss = opt.zero_out_prompt_loss
if device_id >= 0:
gpu_rank = opt.gpu_ranks[device_id]
else:
gpu_rank = -1
n_gpu = 0
earlystopper = (
onmt.utils.EarlyStopping(
opt.early_stopping, scorers=onmt.utils.scorers_from_opts(opt)
)
if opt.early_stopping > 0
else None
)
report_manager = onmt.utils.build_report_manager(opt, gpu_rank)
trainer = Trainer(
model,
train_loss,
valid_loss,
scoring_preparator,
valid_scorers,
optim,
trunc_size,
norm_method,
accum_count,
accum_steps,
n_gpu,
gpu_rank,
parallel_mode,
report_manager,
with_align=True if opt.lambda_align > 0 else False,
model_saver=model_saver,
average_decay=average_decay,
average_every=average_every,
model_dtype=opt.model_dtype,
earlystopper=earlystopper,
dropout=dropout,
attention_dropout=attention_dropout,
dropout_steps=dropout_steps,
zero_out_prompt_loss=zero_out_prompt_loss,
)
return trainer
class Trainer(object):
"""Class that controls the training process.
Args:
model(:py:class:`onmt.models.model.NMTModel`): model to train
train_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
valid_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
scoring_preparator(:obj:`onmt.translate.utils.ScoringPreparator`):
preparator for the calculation of metrics via the
_eval_handler method
valid_scorers (dict): keeps in memory the current values
of the validation metrics
optim(:obj:`onmt.utils.optimizers.Optimizer`):
the optimizer responsible for update
trunc_size(int): length of truncated back propagation
through time
accum_count(list): accumulate gradients this many times.
accum_steps(list): steps for accum gradients changes.
n_gpu (int): number of gpu.
gpu_rank (int): ordinal rank of the gpu in the list.
report_manager(:obj:`onmt.utils.ReportMgrBase`):
the object that creates reports, or None
with_align (bool): whether to jointly lear alignment
(Transformer)
model_saver(:obj:`onmt.models.ModelSaverBase`): the saver is
used to save a checkpoint.
Thus nothing will be saved if this parameter is None.
average_decay (float): cf opt.average_decay
average_every (int): average model every x steps.
model_dtype (str): fp32 or fp16.
earlystopper (:obj:`onmt.utils.EarlyStopping`): add early
stopping mecanism
dropout (float): dropout value in RNN or FF layers.
attention_dropout (float): dropaout in attention layers.
dropout_steps (list): dropout values scheduling in steps.
zero_out_prompt_loss (bool): whether to zero-out the prompt loss
(mostly for LLM finetuning)."""
def __init__(
self,
model,
train_loss,
valid_loss,
scoring_preparator,
valid_scorers,
optim,
trunc_size=0,
norm_method="sents",
accum_count=[1],
accum_steps=[0],
n_gpu=1,
gpu_rank=1,
parallel_mode="data_parallel",
report_manager=None,
with_align=False,
model_saver=None,
average_decay=0,
average_every=1,
model_dtype="fp32",
earlystopper=None,
dropout=[0.3],
attention_dropout=[0.1],
dropout_steps=[0],
zero_out_prompt_loss=False,
):
# Basic attributes.
self.model = model
self.train_loss = train_loss
self.valid_loss = valid_loss
self.scoring_preparator = scoring_preparator
self.valid_scorers = valid_scorers
self.optim = optim
self.trunc_size = trunc_size
self.norm_method = norm_method
self.accum_count_l = accum_count
self.accum_count = accum_count[0]
self.accum_steps = accum_steps
self.n_gpu = n_gpu
self.gpu_rank = gpu_rank
self.parallel_mode = parallel_mode
self.report_manager = report_manager
self.with_align = with_align
self.model_saver = model_saver
self.average_decay = average_decay
self.moving_average = None
self.average_every = average_every
self.model_dtype = model_dtype
self.earlystopper = earlystopper
self.dropout = dropout
self.attention_dropout = attention_dropout
self.dropout_steps = dropout_steps
self.zero_out_prompt_loss = zero_out_prompt_loss
for i in range(len(self.accum_count_l)):
assert self.accum_count_l[i] > 0
# Set model in training mode.
self.model.train()
def _eval_handler(self, scorer, preds, texts_ref):
"""Trigger metrics calculations
Args:
scorer (:obj:``onmt.scorer.Scorer``): scorer.
preds, texts_ref: outputs of the scorer's `translate` method.
Returns:
The metric calculated by the scorer."""
return scorer.compute_score(preds, texts_ref)
def _accum_count(self, step):
for i in range(len(self.accum_steps)):
if step > self.accum_steps[i]:
_accum = self.accum_count_l[i]
return _accum
def _maybe_update_dropout(self, step):
for i in range(len(self.dropout_steps)):
if step > 1 and step == self.dropout_steps[i] + 1:
self.model.update_dropout(self.dropout[i], self.attention_dropout[i])
logger.info(
"Updated dropout/attn dropout to %f %f at step %d"
% (self.dropout[i], self.attention_dropout[i], step)
)
def _accum_batches(self, iterator):
batches = []
normalization = 0
self.accum_count = self._accum_count(self.optim.training_step)
for batch in iterator:
batches.append(batch)
if self.norm_method == "tokens":
num_tokens = (
batch["tgt"][:, 1:, 0].ne(self.train_loss.padding_idx).sum()
)
normalization += num_tokens.item()
normalization -= len(batch["tgt"]) # don't count for EOS
else:
normalization += len(batch["tgt"])
if len(batches) == self.accum_count:
yield batches, normalization
self.accum_count = self._accum_count(self.optim.training_step)
batches = []
normalization = 0
if batches:
yield batches, normalization
def _update_average(self, step):
if self.moving_average is None:
copy_params = [
params.detach().float() for params in self.model.parameters()
]
self.moving_average = copy_params
else:
average_decay = max(self.average_decay, 1 - (step + 1) / (step + 10))
for (i, avg), cpt in zip(
enumerate(self.moving_average), self.model.parameters()
):
self.moving_average[i] = (
1 - average_decay
) * avg + cpt.detach().float() * average_decay
def train(
self,
train_iter,
train_steps,
save_checkpoint_steps=5000,
valid_iter=None,
valid_steps=10000,
):
"""The main training loop by iterating over ``train_iter`` and possibly
running validation on ``valid_iter``.
Args:
train_iter: An iterator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
:obj:``nmt.Statistics``: training loss statistics"""
if valid_iter is None:
logger.info("Start training loop without validation...")
valid_stats = None
else:
logger.info(
"Start training loop and validate every %d steps...", valid_steps
)
logger.info("Scoring with: {}".format(self.scoring_preparator.transform))
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
self._start_report_manager(start_time=total_stats.start_time)
# Let's clean the GPUs before training loop
torch.cuda.empty_cache()
for i, (batches, normalization) in enumerate(self._accum_batches(train_iter)):
step = self.optim.training_step
# UPDATE DROPOUT
self._maybe_update_dropout(step)
if self.n_gpu > 1 and self.parallel_mode == "data_parallel":
normalization = sum(
onmt.utils.distributed.all_gather_list(normalization)
)
self._gradient_accumulation(
batches, normalization, total_stats, report_stats
)
if self.average_decay > 0 and i % self.average_every == 0:
self._update_average(step)
report_stats = self._maybe_report_training(
step, train_steps, self.optim.learning_rate(), report_stats
)
if valid_iter is not None and step % valid_steps == 0:
valid_stats = self.validate(
valid_iter, moving_average=self.moving_average
)
if step % valid_steps == 0 and self.gpu_rank <= 0:
self._report_step(
self.optim.learning_rate(),
step,
valid_stats=valid_stats,
train_stats=total_stats,
)
# Run patience mechanism
if self.earlystopper is not None:
self.earlystopper(valid_stats, step)
# If the patience has reached the limit, stop training
if self.earlystopper.has_stopped():
logger.info("earlystopper has_stopped!")
break
if self.model_saver is not None and (
save_checkpoint_steps != 0 and step % save_checkpoint_steps == 0
):
self.model_saver.save(step, moving_average=self.moving_average)
if train_steps > 0 and step >= train_steps:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats
def validate(self, valid_iter, moving_average=None):
"""Validate model.
Args:
valid_iter: validate data iterator
Returns:
:obj:``nmt.Statistics``: validation loss statistics"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average, valid_model.parameters()):
model_params_data.append(param.data)
param.data = (
avg.data.half() if param.dtype == torch.float16 else avg.data
)
# Set model in validating mode.
valid_model.eval()
# raw_srcs = []
# raw_refs = []
with torch.no_grad():
stats = onmt.utils.Statistics()
start = time.time()
for batch in valid_iter:
src = batch["src"]
src_len = batch["srclen"]
tgt = batch["tgt"]
with torch.cuda.amp.autocast(enabled=self.optim.amp):
# F-prop through the model.
model_out, attns = valid_model(
src, tgt, src_len, with_align=self.with_align
)
# Compute loss.
_, batch_stats = self.valid_loss(batch, model_out, attns)
stats.update(batch_stats)
logger.info(
"""valid stats calculation
took: {} s.""".format(
time.time() - start
)
)
# Compute validation metrics (at batch.dataset level)
if len(self.valid_scorers) > 0:
computed_metrics = {}
start = time.time()
preds, texts_ref = self.scoring_preparator.translate(
model=self.model,
gpu_rank=self.gpu_rank,
step=self.optim.training_step,
)
logger.info(
"""The translation of the valid dataset for dynamic scoring
took : {} s.""".format(
time.time() - start
)
)
for i, metric in enumerate(self.valid_scorers):
logger.info("UPDATING VALIDATION {}".format(metric))
self.valid_scorers[metric]["value"] = self._eval_handler(
scorer=self.valid_scorers[metric]["scorer"],
preds=preds,
texts_ref=texts_ref,
)
computed_metrics[metric] = self.valid_scorers[metric]["value"]
logger.info(
"validation {}: {}".format(
metric, self.valid_scorers[metric]["value"]
)
)
# Compute stats
metric_stats = onmt.utils.Statistics(
0, 0, 0, 0, 0, computed_metrics
)
# Update statistics.
stats.update(metric_stats)
if moving_average:
for param_data, param in zip(model_params_data, self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
return stats
def _gradient_accumulation(
self, true_batches, normalization, total_stats, report_stats
):
"""Function that iterates over big batches = ``true_batches``
Perform a backward on the loss of each sub_batch and
finally update the params at the end of the big batch."""
if self.accum_count > 1:
self.optim.zero_grad(set_to_none=True)
for k, batch in enumerate(true_batches):
target_size = batch["tgt"].size(1)
# Truncated BPTT: reminder not compatible with accum > 1
if self.trunc_size:
trunc_size = self.trunc_size
else:
trunc_size = target_size
src = batch["src"]
src_len = batch["srclen"]
if src_len is not None:
report_stats.n_src_words += src_len.sum().item()
total_stats.n_src_words += src_len.sum().item()
tgt_outer = batch["tgt"]
bptt = False
for j in range(0, target_size - 1, trunc_size):
# 1. Create truncated target.
tgt = tgt_outer[:, j : j + trunc_size, :]
# 2. F-prop all but generator.
if self.accum_count == 1:
self.optim.zero_grad(set_to_none=True)
try:
with torch.cuda.amp.autocast(enabled=self.optim.amp):
model_out, attns = self.model(
src, tgt, src_len, bptt=bptt, with_align=self.with_align
)
bptt = True
# 3. Compute loss.
if self.zero_out_prompt_loss:
# The loss of the prompt will be set to zero.
batch = self.train_loss.ignore_prompt(batch)
loss, batch_stats = self.train_loss(
batch,
model_out,
attns,
trunc_start=j,
trunc_size=trunc_size,
)
if loss is not None:
loss /= normalization
self.optim.backward(loss)
total_stats.update(batch_stats)
report_stats.update(batch_stats)
except Exception as exc:
trace_content = traceback.format_exc()
if "CUDA out of memory" in trace_content:
logger.info(
"Step %d, cuda OOM - batch removed",
self.optim.training_step,
)
torch.cuda.empty_cache()
if self.n_gpu > 1 and self.parallel_mode == "tensor_parallel":
torch.distributed.destroy_process_group()
sys.exit()
else:
traceback.print_exc()
raise exc
# If truncated, don't backprop fully.
if self.model.decoder.state != {}:
self.model.decoder.detach_state()
# in case of multi step gradient accumulation,
# update only after accum batches
if self.n_gpu > 1 and self.parallel_mode == "data_parallel":
grads = [
p.grad.data
for p in self.model.parameters()
if p.requires_grad and p.grad is not None
]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(self.n_gpu)
)
self.optim.step()
def _start_report_manager(self, start_time=None):
"""Simple function to start report manager (if any)"""
if self.report_manager is not None:
if start_time is None:
self.report_manager.start()
else:
self.report_manager.start_time = start_time
def _maybe_report_training(self, step, num_steps, learning_rate, report_stats):
"""Simple function to report training stats (if report_manager is set)
see ``onmt.utils.ReportManagerBase.report_training`` for doc"""
if self.report_manager is not None:
return self.report_manager.report_training(
step,
num_steps,
learning_rate,
None
if self.earlystopper is None
else self.earlystopper.current_tolerance,
report_stats,
multigpu=self.n_gpu > 1 and self.parallel_mode == "data_parallel",
)
def _report_step(self, learning_rate, step, valid_stats=None, train_stats=None):
"""Simple function to report stats (if report_manager is set)
see ``onmt.utils.ReportManagerBase.report_step`` for doc"""
if self.report_manager is not None:
return self.report_manager.report_step(
learning_rate,
None
if self.earlystopper is None
else self.earlystopper.current_tolerance,
step,
valid_stats=valid_stats,
train_stats=train_stats,
)
|