File size: 29,110 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
"""Here come the tests for implemented transform."""
import unittest
import copy
import yaml
import math
from argparse import Namespace
from onmt.transforms import (
get_transforms_cls,
get_specials,
make_transforms,
TransformPipe,
)
from onmt.transforms.bart import BARTNoising
class TestTransform(unittest.TestCase):
def test_transform_register(self):
builtin_transform = [
"filtertoolong",
"prefix",
"sentencepiece",
"bpe",
"onmt_tokenize",
"bart",
"switchout",
"tokendrop",
"tokenmask",
"insert_mask_before_placeholder",
]
get_transforms_cls(builtin_transform)
def test_vocab_required_transform(self):
transforms_cls = get_transforms_cls(["bart", "switchout"])
opt = Namespace(seed=-1, switchout_temperature=1.0)
# transforms that require vocab will not create if not provide vocab
transforms = make_transforms(opt, transforms_cls, vocabs=None)
self.assertEqual(len(transforms), 0)
with self.assertRaises(ValueError):
transforms_cls["switchout"](opt).warm_up(vocabs=None)
transforms_cls["bart"](opt).warm_up(vocabs=None)
def test_transform_specials(self):
transforms_cls = get_transforms_cls(["prefix"])
corpora = yaml.safe_load(
"""
trainset:
path_src: data/src-train.txt
path_tgt: data/tgt-train.txt
transforms: ["prefix"]
weight: 1
src_prefix: "⦅_pf_src⦆"
tgt_prefix: "⦅_pf_tgt⦆"
"""
)
opt = Namespace(data=corpora)
specials = get_specials(opt, transforms_cls)
specials_expected = {"src": ["⦅_pf_src⦆"], "tgt": ["⦅_pf_tgt⦆"]}
self.assertEqual(specials, specials_expected)
def test_transform_pipe(self):
# 1. Init first transform in the pipe
prefix_cls = get_transforms_cls(["prefix"])["prefix"]
corpora = yaml.safe_load(
"""
trainset:
path_src: data/src-train.txt
path_tgt: data/tgt-train.txt
transforms: [prefix, filtertoolong]
weight: 1
src_prefix: "⦅_pf_src⦆"
tgt_prefix: "⦅_pf_tgt⦆"
"""
)
opt = Namespace(data=corpora, seed=-1)
prefix_transform = prefix_cls(opt)
prefix_transform.warm_up()
# 2. Init second transform in the pipe
filter_cls = get_transforms_cls(["filtertoolong"])["filtertoolong"]
opt = Namespace(src_seq_length=4, tgt_seq_length=4)
filter_transform = filter_cls(opt)
# 3. Sequential combine them into a transform pipe
transform_pipe = TransformPipe.build_from([prefix_transform, filter_transform])
ex = {
"src": ["Hello", ",", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
# 4. apply transform pipe for example
ex_after = transform_pipe.apply(copy.deepcopy(ex), corpus_name="trainset")
# 5. example after the pipe exceed the length limit, thus filtered
self.assertIsNone(ex_after)
# 6. Transform statistics registed (here for filtertoolong)
self.assertTrue(len(transform_pipe.statistics.observables) > 0)
msg = transform_pipe.statistics.report()
self.assertIsNotNone(msg)
# 7. after report, statistics become empty as a fresh start
self.assertTrue(len(transform_pipe.statistics.observables) == 0)
class TestMiscTransform(unittest.TestCase):
def test_prefix(self):
prefix_cls = get_transforms_cls(["prefix"])["prefix"]
corpora = yaml.safe_load(
"""
trainset:
path_src: data/src-train.txt
path_tgt: data/tgt-train.txt
transforms: [prefix]
weight: 1
src_prefix: "⦅_pf_src⦆"
tgt_prefix: "⦅_pf_tgt⦆"
"""
)
opt = Namespace(data=corpora, seed=-1)
prefix_transform = prefix_cls(opt)
prefix_transform.warm_up()
self.assertIn("trainset", prefix_transform.prefix_dict)
ex_in = {
"src": ["Hello", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
with self.assertRaises(ValueError):
prefix_transform.apply(ex_in)
prefix_transform.apply(ex_in, corpus_name="validset")
ex_out = prefix_transform.apply(ex_in, corpus_name="trainset")
self.assertEqual(ex_out["src"][0], "⦅_pf_src⦆")
self.assertEqual(ex_out["tgt"][0], "⦅_pf_tgt⦆")
def test_filter_too_long(self):
filter_cls = get_transforms_cls(["filtertoolong"])["filtertoolong"]
opt = Namespace(src_seq_length=100, tgt_seq_length=100)
filter_transform = filter_cls(opt)
# filter_transform.warm_up()
ex_in = {
"src": ["Hello", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
ex_out = filter_transform.apply(ex_in)
self.assertIs(ex_out, ex_in)
filter_transform.tgt_seq_length = 2
ex_out = filter_transform.apply(ex_in)
self.assertIsNone(ex_out)
class TestSubwordTransform(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_opts = {
"seed": 3431,
"share_vocab": False,
"src_subword_model": "data/sample.bpe",
"tgt_subword_model": "data/sample.bpe",
"src_subword_nbest": 1,
"tgt_subword_nbest": 1,
"src_subword_alpha": 0.0,
"tgt_subword_alpha": 0.0,
"src_subword_vocab": "",
"tgt_subword_vocab": "",
"src_vocab_threshold": 0,
"tgt_vocab_threshold": 0,
}
def test_bpe(self):
bpe_cls = get_transforms_cls(["bpe"])["bpe"]
opt = Namespace(**self.base_opts)
bpe_cls._validate_options(opt)
bpe_transform = bpe_cls(opt)
bpe_transform.warm_up()
ex = {
"src": ["Hello", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
bpe_transform.apply(ex, is_train=True)
ex_gold = {
"src": ["H@@", "ell@@", "o", "world", "."],
"tgt": ["B@@", "on@@", "j@@", "our", "le", "mon@@", "de", "."],
}
self.assertEqual(ex, ex_gold)
# test BPE-dropout:
bpe_transform.dropout["src"] = 1.0
tokens = ["Another", "world", "."]
gold_bpe = ["A@@", "no@@", "ther", "world", "."]
gold_dropout = [
"A@@",
"n@@",
"o@@",
"t@@",
"h@@",
"e@@",
"r",
"w@@",
"o@@",
"r@@",
"l@@",
"d",
".",
]
# 1. disable bpe dropout for not training example
after_bpe = bpe_transform._tokenize(tokens, is_train=False)
self.assertEqual(after_bpe, gold_bpe)
# 2. enable bpe dropout for training example
after_bpe = bpe_transform._tokenize(tokens, is_train=True)
self.assertEqual(after_bpe, gold_dropout)
# 3. (NOTE) disable dropout won't take effect if already seen
# this is caused by the cache mechanism in bpe:
# return cached subword if the original token is seen when no dropout
after_bpe2 = bpe_transform._tokenize(tokens, is_train=False)
self.assertEqual(after_bpe2, gold_dropout)
def test_sentencepiece(self):
sp_cls = get_transforms_cls(["sentencepiece"])["sentencepiece"]
base_opt = copy.copy(self.base_opts)
base_opt["src_subword_model"] = "data/sample.sp.model"
base_opt["tgt_subword_model"] = "data/sample.sp.model"
opt = Namespace(**base_opt)
sp_cls._validate_options(opt)
sp_transform = sp_cls(opt)
sp_transform.warm_up()
ex = {
"src": ["Hello", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
sp_transform.apply(ex, is_train=True)
ex_gold = {
"src": ["▁H", "el", "lo", "▁world", "▁."],
"tgt": ["▁B", "on", "j", "o", "ur", "▁le", "▁m", "on", "de", "▁."],
}
self.assertEqual(ex, ex_gold)
# test SP regularization:
sp_transform.src_subword_nbest = 4
tokens = ["Another", "world", "."]
gold_sp = ["▁An", "other", "▁world", "▁."]
# 1. enable regularization for training example
after_sp = sp_transform._tokenize(tokens, is_train=True)
self.assertEqual(after_sp, ["▁An", "o", "ther", "▁world", "▁."])
# 2. disable regularization for not training example
after_sp = sp_transform._tokenize(tokens, is_train=False)
self.assertEqual(after_sp, gold_sp)
# Test mask location
ex = {
"src": "### Instruction: ⦅newline⦆instruction⦅newline⦆⦅newline⦆"
"### Response : ⦅newline⦆⦅_mask_before_⦆response",
"tgt": "",
}
ex["src"] = ex["src"].split(" ")
ex_gold = {
"src": [
"▁",
"#",
"#",
"#",
"▁In",
"struct",
"ion",
":",
"▁in",
"struct",
"ion",
"▁",
"#",
"#",
"#",
"▁Re",
"s",
"p",
"on",
"s",
"e",
"▁",
":",
"<blank>",
"▁re",
"s",
"p",
"on",
"s",
"e",
],
"tgt": [],
}
sp_transform.apply(ex, is_train=True)
self.assertEqual(ex, ex_gold)
def test_pyonmttok_bpe(self):
onmttok_cls = get_transforms_cls(["onmt_tokenize"])["onmt_tokenize"]
base_opt = copy.copy(self.base_opts)
base_opt["src_subword_type"] = "bpe"
base_opt["tgt_subword_type"] = "bpe"
onmt_args = "{'mode': 'space', 'joiner_annotate': True}"
base_opt["src_onmttok_kwargs"] = onmt_args
base_opt["tgt_onmttok_kwargs"] = onmt_args
base_opt["gpt2_pretok"] = False
opt = Namespace(**base_opt)
onmttok_cls._validate_options(opt)
onmttok_transform = onmttok_cls(opt)
onmttok_transform.warm_up()
ex = {
"src": ["Hello", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
onmttok_transform.apply(ex, is_train=True)
ex_gold = {
"src": ["H■", "ell■", "o", "world", "."],
"tgt": ["B■", "on■", "j■", "our", "le", "mon■", "de", "."],
}
self.assertEqual(ex, ex_gold)
# Test mask location
ex = {
"src": (
"### Instruction: ⦅newline⦆instruction⦅newline⦆⦅newline⦆"
"### Response : ⦅newline⦆⦅_mask_before_⦆response"
),
"tgt": "",
}
ex["src"] = ex["src"].split(" ")
ex_gold = {
"src": [
"#■",
"#■",
"#",
"In■",
"struc■",
"tion■",
":",
"\n■",
"in■",
"struc■",
"tion■",
"\n■",
"\n■",
"#■",
"#■",
"#",
"R■",
"es■",
"p■",
"on■",
"se",
":",
"\n",
"<blank>",
"respon■",
"se",
],
"tgt": [],
}
onmttok_transform.apply(ex, is_train=True)
self.assertEqual(ex, ex_gold)
def test_pyonmttok_sp(self):
onmttok_cls = get_transforms_cls(["onmt_tokenize"])["onmt_tokenize"]
base_opt = copy.copy(self.base_opts)
base_opt["src_subword_type"] = "sentencepiece"
base_opt["tgt_subword_type"] = "sentencepiece"
base_opt["src_subword_model"] = "data/sample.sp.model"
base_opt["tgt_subword_model"] = "data/sample.sp.model"
onmt_args = "{'mode': 'none', 'spacer_annotate': True}"
base_opt["src_onmttok_kwargs"] = onmt_args
base_opt["tgt_onmttok_kwargs"] = onmt_args
base_opt["gpt2_pretok"] = False
opt = Namespace(**base_opt)
onmttok_cls._validate_options(opt)
onmttok_transform = onmttok_cls(opt)
onmttok_transform.warm_up()
ex = {
"src": ["Hello", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
onmttok_transform.apply(ex, is_train=True)
ex_gold = {
"src": ["▁H", "el", "lo", "▁world", "▁."],
"tgt": ["▁B", "on", "j", "o", "ur", "▁le", "▁m", "on", "de", "▁."],
}
self.assertEqual(ex, ex_gold)
# Test mask location
ex = {
"src": (
"### Instruction: ⦅newline⦆instruction⦅newline⦆⦅newline⦆"
"### Response : ⦅newline⦆⦅_mask_before_⦆response"
),
"tgt": "",
}
ex["src"] = ex["src"].split(" ")
onmttok_transform.apply(ex, is_train=True)
ex_gold = {
"src": [
"▁",
"#",
"#",
"#",
"▁In",
"struct",
"ion",
":",
"▁in",
"struct",
"ion",
"▁",
"#",
"#",
"#",
"▁Re",
"s",
"p",
"on",
"se",
"▁",
":",
"<blank>",
"▁re",
"s",
"p",
"on",
"se",
],
"tgt": [],
}
self.assertEqual(ex, ex_gold)
class TestSamplingTransform(unittest.TestCase):
def test_tokendrop(self):
tokendrop_cls = get_transforms_cls(["tokendrop"])["tokendrop"]
opt = Namespace(seed=3434, tokendrop_temperature=0.1)
tokendrop_transform = tokendrop_cls(opt)
tokendrop_transform.warm_up()
ex = {
"src": ["Hello", ",", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
# Not apply token drop for not training example
ex_after = tokendrop_transform.apply(copy.deepcopy(ex), is_train=False)
self.assertEqual(ex_after, ex)
# apply token drop for training example
ex_after = tokendrop_transform.apply(copy.deepcopy(ex), is_train=True)
self.assertNotEqual(ex_after, ex)
def test_tokenmask(self):
tokenmask_cls = get_transforms_cls(["tokenmask"])["tokenmask"]
opt = Namespace(seed=3434, tokenmask_temperature=0.1)
tokenmask_transform = tokenmask_cls(opt)
tokenmask_transform.warm_up()
ex = {
"src": ["Hello", ",", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
# Not apply token mask for not training example
ex_after = tokenmask_transform.apply(copy.deepcopy(ex), is_train=False)
self.assertEqual(ex_after, ex)
# apply token mask for training example
ex_after = tokenmask_transform.apply(copy.deepcopy(ex), is_train=True)
self.assertNotEqual(ex_after, ex)
def test_switchout(self):
switchout_cls = get_transforms_cls(["switchout"])["switchout"]
opt = Namespace(seed=3434, switchout_temperature=0.1)
switchout_transform = switchout_cls(opt)
with self.assertRaises(ValueError):
# require vocabs to warm_up
switchout_transform.warm_up(vocabs=None)
vocabs = {
"src": Namespace(ids_to_tokens=["A", "Fake", "vocab"]),
"tgt": Namespace(ids_to_tokens=["A", "Fake", "vocab"]),
}
switchout_transform.warm_up(vocabs=vocabs)
ex = {
"src": ["Hello", ",", "world", "."],
"tgt": ["Bonjour", "le", "monde", "."],
}
# Not apply token mask for not training example
ex_after = switchout_transform.apply(copy.deepcopy(ex), is_train=False)
self.assertEqual(ex_after, ex)
# apply token mask for training example
ex_after = switchout_transform.apply(copy.deepcopy(ex), is_train=True)
self.assertNotEqual(ex_after, ex)
class TestBARTNoising(unittest.TestCase):
def setUp(self):
BARTNoising.set_random_seed(1234)
self.MASK_TOK = "[MASK]"
self.FAKE_VOCAB = "[TESTING]"
def test_sentence_permute(self):
sent1 = ["Hello", "world", "."]
sent2 = ["Sentence", "1", "!"]
sent3 = ["Sentence", "2", "!"]
sent4 = ["Sentence", "3", "!"]
bart_noise = BARTNoising(
vocab=[self.FAKE_VOCAB],
permute_sent_ratio=0.5,
replace_length=0, # not raise Error
# Defalt: full_stop_token=[".", "?", "!"]
)
tokens = sent1 + sent2 + sent3 + sent4
ends = bart_noise._get_sentence_borders(tokens).tolist()
self.assertEqual(ends, [3, 6, 9, 12])
tokens_perm = bart_noise.apply(tokens)
expected_tokens = sent2 + sent1 + sent3 + sent4
self.assertEqual(expected_tokens, tokens_perm)
def test_rotate(self):
bart_noise = BARTNoising(
vocab=[self.FAKE_VOCAB],
rotate_ratio=1.0,
replace_length=0, # not raise Error
)
tokens = ["This", "looks", "really", "good", "!"]
rotated = bart_noise.apply(tokens)
self.assertNotEqual(tokens, rotated)
not_rotate = bart_noise.rolling_noise(tokens, p=0.0)
self.assertEqual(tokens, not_rotate)
def test_token_insert(self):
bart_noise = BARTNoising(
vocab=[self.FAKE_VOCAB],
mask_tok=self.MASK_TOK,
insert_ratio=0.5,
random_ratio=0.3,
replace_length=0, # not raise Error
# Defalt: full_stop_token=[".", "?", "!"]
)
tokens = ["This", "looks", "really", "good", "!"]
inserted = bart_noise.apply(tokens)
n_insert = math.ceil(len(tokens) * bart_noise.insert_ratio)
inserted_len = n_insert + len(tokens)
self.assertEqual(len(inserted), inserted_len)
# random_ratio of inserted tokens are chosen in vocab
n_random = math.ceil(n_insert * bart_noise.random_ratio)
self.assertEqual(
sum(1 if tok == self.FAKE_VOCAB else 0 for tok in inserted),
n_random,
)
# others are MASK_TOK
self.assertEqual(
sum(1 if tok == self.MASK_TOK else 0 for tok in inserted),
n_insert - n_random,
)
def test_token_mask(self):
"""Mask will be done on token level.
Condition:
* `mask_length` == subword;
* or not specify subword marker (joiner/spacer) by `is_joiner`.
"""
bart_noise = BARTNoising(
vocab=[self.FAKE_VOCAB],
mask_tok=self.MASK_TOK,
mask_ratio=0.5,
mask_length="subword",
replace_length=0, # 0 to drop them, 1 to replace them with MASK
# insert_ratio=0.0,
# random_ratio=0.0,
# Defalt: full_stop_token=[".", "?", "!"]
)
tokens = ["H■", "ell■", "o", "world", "."]
# all token are considered as an individual word
self.assertTrue(all(bart_noise._is_word_start(tokens)))
n_tokens = len(tokens)
# 1. tokens are dropped when replace_length is 0
masked = bart_noise.apply(tokens)
n_masked = math.ceil(n_tokens * bart_noise.mask_ratio)
# print(f"token delete: {masked} / {tokens}")
self.assertEqual(len(masked), n_tokens - n_masked)
# 2. tokens are replaced by MASK when replace_length is 1
bart_noise.replace_length = 1
masked = bart_noise.apply(tokens)
n_masked = math.ceil(n_tokens * bart_noise.mask_ratio)
# print(f"token mask: {masked} / {tokens}")
self.assertEqual(len(masked), n_tokens)
self.assertEqual(
sum([1 if tok == self.MASK_TOK else 0 for tok in masked]), n_masked
)
def test_whole_word_mask(self):
"""Mask will be done on whole word that may across multiply token.
Condition:
* `mask_length` == word;
* specify subword marker in order to find word boundary.
"""
bart_noise = BARTNoising(
vocab=[self.FAKE_VOCAB],
mask_tok=self.MASK_TOK,
mask_ratio=0.5,
mask_length="word",
is_joiner=True,
replace_length=0, # 0 to drop them, 1 to replace them with MASK
# insert_ratio=0.0,
# random_ratio=0.0,
# Defalt: full_stop_token=[".", "?", "!"]
)
tokens = ["H■", "ell■", "o", "wor■", "ld", "."]
# start token of word are identified using subword marker
token_starts = [True, False, False, True, False, True]
self.assertEqual(bart_noise._is_word_start(tokens), token_starts)
# 1. replace_length 0: "words" are dropped
masked = bart_noise.apply(copy.copy(tokens))
n_words = sum(token_starts)
n_masked = math.ceil(n_words * bart_noise.mask_ratio)
# print(f"word delete: {masked} / {tokens}")
# self.assertEqual(len(masked), n_words - n_masked)
# 2. replace_length 1: "words" are replaced with a single MASK
bart_noise.replace_length = 1
masked = bart_noise.apply(copy.copy(tokens))
# print(f"whole word single mask: {masked} / {tokens}")
# len(masked) depend on number of tokens in select word
n_words = sum(token_starts)
n_masked = math.ceil(n_words * bart_noise.mask_ratio)
self.assertEqual(
sum(1 if tok == self.MASK_TOK else 0 for tok in masked), n_masked
)
# 3. replace_length -1: all tokens in "words" are replaced with MASK
bart_noise.replace_length = -1
masked = bart_noise.apply(copy.copy(tokens))
# print(f"whole word multi mask: {masked} / {tokens}")
self.assertEqual(len(masked), len(tokens)) # length won't change
n_words = sum(token_starts)
n_masked = math.ceil(n_words * bart_noise.mask_ratio)
# number of mask_tok depend on number of tokens in selected word
# number of MASK_TOK can be greater than n_masked
self.assertTrue(
sum(1 if tok == self.MASK_TOK else 0 for tok in masked) > n_masked
)
def test_span_infilling(self):
bart_noise = BARTNoising(
vocab=[self.FAKE_VOCAB],
mask_tok=self.MASK_TOK,
mask_ratio=0.5,
mask_length="span-poisson",
poisson_lambda=3.0,
is_joiner=True,
replace_length=1,
# insert_ratio=0.5,
# random_ratio=0.3,
# Defalt: full_stop_token=[".", "?", "!"]
)
self.assertIsNotNone(bart_noise.mask_span_distribution)
tokens = ["H■", "ell■", "o", "world", ".", "An■", "other", "!"]
# start token of word are identified using subword marker
token_starts = [True, False, False, True, True, True, False, True]
self.assertEqual(bart_noise._is_word_start(tokens), token_starts)
bart_noise.apply(copy.copy(tokens))
# n_words = sum(token_starts)
# n_masked = math.ceil(n_words * bart_noise.mask_ratio)
# print(f"Text Span Infilling: {infillied} / {tokens}")
# print(n_words, n_masked)
class TestFeaturesTransform(unittest.TestCase):
def test_inferfeats(self):
inferfeats_cls = get_transforms_cls(["inferfeats"])["inferfeats"]
opt = Namespace(reversible_tokenization="joiner")
inferfeats_transform = inferfeats_cls(opt)
ex_in = {
"src": [
"however",
"■,",
"according",
"to",
"the",
"logs",
"■,",
"she",
"is",
"hard",
"■-■",
"working",
"■.",
],
"src_original": [
"however,",
"according",
"to",
"the",
"logs,",
"she",
"is",
"hard-working.",
],
}
ex_out = inferfeats_transform.apply(ex_in)
self.assertIs(ex_out, ex_in)
ex_in["src_feats"] = [["1", "2", "3", "4", "5", "6", "7", "8"]]
ex_out = inferfeats_transform.apply(ex_in)
self.assertEqual(
ex_out["src_feats"][0],
["1", "1", "2", "3", "4", "5", "5", "6", "7", "8", "8", "8", "8"],
)
ex_in["src"] = [
"⦅mrk_case_modifier_C⦆",
"however",
"■,",
"according",
"to",
"the",
"logs",
"■,",
"⦅mrk_begin_case_region_U⦆",
"she",
"is",
"hard",
"■-■",
"working",
"⦅mrk_end_case_region_U⦆",
"■.",
]
ex_in["src_feats"] = [["1", "2", "3", "4", "5", "6", "7", "8"]]
ex_out = inferfeats_transform.apply(ex_in)
self.assertEqual(
ex_out["src_feats"][0],
[
"1",
"1",
"1",
"2",
"3",
"4",
"5",
"5",
"6",
"6",
"7",
"8",
"8",
"8",
"8",
"8",
],
)
ex_in = {
"src": [
"however",
"■,",
"according",
"to",
"the",
"logs",
"■,",
"she",
"is",
"hard",
"■-■",
"working",
"■.",
],
"src_original": [
"however",
"■,",
"according",
"to",
"the",
"logs",
"■,",
"she",
"is",
"hard-working",
"■.",
],
"src_feats": [["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"]],
}
ex_out = inferfeats_transform.apply(ex_in)
self.assertEqual(
ex_out["src_feats"][0],
["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "10", "10", "11"],
)
class TestInsertMaskBeforePlaceholder(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_opts = {
"response_pattern": "Response : ⦅newline⦆",
}
def test_insert_mask_before_placeholder(self):
insert_mask_before_placeholder_cls = get_transforms_cls(
["insert_mask_before_placeholder"]
)["insert_mask_before_placeholder"]
opt = Namespace(**self.base_opts)
insert_mask_before_placeholder_transform = insert_mask_before_placeholder_cls(
opt
)
ex_in = {
"src": "### Instruction: ⦅newline⦆instruction⦅newline⦆⦅newline⦆"
"### Response : ⦅newline⦆response",
"tgt": "",
}
ex_in["src"] = ex_in["src"].split(" ")
ex_in["tgt"] = ex_in["src"]
ex_out = insert_mask_before_placeholder_transform.apply(ex_in)
ex_gold = {
"src": [
"###",
"Instruction:",
"⦅newline⦆instruction⦅newline⦆⦅newline⦆###",
"Response",
":",
"⦅newline⦆⦅_mask_before_⦆response",
],
"tgt": [
"###",
"Instruction:",
"⦅newline⦆instruction⦅newline⦆⦅newline⦆###",
"Response",
":",
"⦅newline⦆⦅_mask_before_⦆response",
],
}
self.assertEqual(ex_out, ex_gold)
|