File size: 17,126 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
"""Transforms relate to noising from BART: based on code of fairseq."""
import math
import numpy as np
import torch
from typing import Sequence, Callable
from onmt.constants import DefaultTokens, SubwordMarker
from onmt.transforms import register_transform
from .transform import Transform
def _subword_start_by_joiner(tokens: Sequence[str]) -> Sequence[bool]:
"""Find word start in a subword list marked by joiner."""
flag = [True] * len(tokens)
for i, token in enumerate(tokens):
if token.startswith(SubwordMarker.JOINER) and i != 0:
flag[i] = False
if token.endswith(SubwordMarker.JOINER):
try:
flag[i + 1] = False
except IndexError:
print("Sentence `{}` not correct!".format(" ".join(token)))
raise
return flag
def _subword_start_by_spacer(tokens: Sequence[str]) -> Sequence[bool]:
"""Find word start in a subword list marked by spacer(as prefix)."""
flag = [x.startswith(SubwordMarker.SPACER) for x in tokens]
flag[0] = True
return flag
def word_start_finder(ignore_subword=False, is_joiner=False) -> Callable:
"""Return callable to find all word start in the token list."""
if not ignore_subword:
if is_joiner:
return _subword_start_by_joiner
else:
return _subword_start_by_spacer
else:
return lambda tokens: [True] * len(tokens)
class BARTNoising(object):
"""Noise from BART."""
def __init__(
self,
vocab,
mask_tok=DefaultTokens.MASK,
mask_ratio=0.0,
insert_ratio=0.0,
permute_sent_ratio=0.0,
poisson_lambda=3.0,
replace_length=-1,
rotate_ratio=0.0,
mask_length="subword",
random_ratio=0.0,
is_joiner=False,
full_stop_token=DefaultTokens.SENT_FULL_STOPS,
):
if vocab is None:
raise ValueError("Inject BART noise requires a valid vocabulary.")
self.vocab = vocab
self.mask_tok = mask_tok
self.mask_ratio = mask_ratio
self.random_ratio = random_ratio
self.insert_ratio = insert_ratio
self.rotate_ratio = rotate_ratio
self.permute_sent_ratio = permute_sent_ratio
self.full_stop_token = full_stop_token
# -1: keep everything (i.e. 1 mask per token)
# 0: replace everything (i.e. no mask)
# 1: 1 mask per span
if replace_length not in [-1, 0, 1]:
raise ValueError(f"invalid arg: replace_length={replace_length}")
self.replace_length = replace_length
if mask_length not in ["subword", "word", "span-poisson"]:
raise ValueError(f"invalid arg: mask-length={mask_length}")
if mask_length == "subword" and replace_length not in [0, 1]:
raise ValueError("if using subwords, use replace-length=1 or 0")
if mask_length == "subword" or is_joiner is None:
# view each subword as word start / input is word level token
self._is_word_start = word_start_finder(ignore_subword=True)
else:
self._is_word_start = word_start_finder(is_joiner=is_joiner)
self.mask_span_distribution = None
if mask_length == "span-poisson":
self.mask_span_distribution = self._make_poisson(poisson_lambda)
self.mask_length = mask_length
self.poisson_lambda = poisson_lambda
@staticmethod
def set_random_seed(seed):
"""Call this before use to ensure reproducibility."""
np.random.seed(seed)
torch.manual_seed(seed)
def _make_poisson(self, poisson_lambda):
lambda_to_the_k = 1
e_to_the_minus_lambda = math.exp(-poisson_lambda)
k_factorial = 1
ps = []
for k in range(0, 128):
ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
lambda_to_the_k *= poisson_lambda
k_factorial *= k + 1
if ps[-1] < 0.0000001:
break
ps = torch.FloatTensor(ps)
return torch.distributions.Categorical(ps)
def _get_sentence_borders(self, tokens):
"""Return lengths of each sentence in the token sequence."""
full_stops = np.array(
[True if token in self.full_stop_token else False for token in tokens]
)
# Pretend it ends with a full stop so last span is a sentence
full_stops[-1] = True
# Tokens that are full stops, where the previous token is not
sentence_lens = (full_stops[1:] * ~full_stops[:-1]).nonzero()[0] + 2
return sentence_lens
def permute_sentences(self, tokens, p=1.0):
if len(tokens) == 1:
return tokens
sentence_lens = self._get_sentence_borders(tokens)
n_sentences = sentence_lens.size
if n_sentences == 1:
return tokens
n_to_permute = math.ceil((n_sentences * 2 * p) / 2.0)
substitutions = np.random.permutation(n_sentences)[:n_to_permute]
ordering = np.arange(0, n_sentences)
ordering[substitutions] = substitutions[np.random.permutation(n_to_permute)]
result = [tok for tok in tokens]
index = 0
for i in ordering:
sentence = tokens[(sentence_lens[i - 1] if i > 0 else 0) : sentence_lens[i]]
result[index : index + len(sentence)] = sentence
index += len(sentence)
assert len(result) == len(tokens), "Error when permute sentences."
return result
def whole_word_mask(self, tokens, p=1.0): # text span mask/infilling
is_word_start = torch.tensor(self._is_word_start(tokens)).int()
n_mask = int(math.ceil(is_word_start.sum() * p))
n_insert = 0
if n_mask == 0:
return tokens
if self.mask_span_distribution is not None: # Text (span) Infilling
lengths = self.mask_span_distribution.sample(sample_shape=(n_mask,))
# Make sure we have enough to mask
cum_length = torch.cumsum(lengths, 0)
while cum_length[-1] < n_mask:
lengths = torch.cat(
[
lengths,
self.mask_span_distribution.sample(sample_shape=(n_mask,)),
],
dim=0,
)
cum_length = torch.cumsum(lengths, 0)
# Trim to masking budget
i = 0
while cum_length[i] < n_mask:
i += 1
lengths[i] = n_mask - (0 if i == 0 else cum_length[i - 1])
n_mask = i + 1
lengths = lengths[:n_mask]
# Handle 0-length mask (inserts) separately
lengths = lengths[lengths > 0]
n_insert = n_mask - lengths.size(0)
n_mask -= n_insert
if n_mask == 0:
return self.insertion_noise(tokens, n_insert / len(tokens))
assert (lengths > 0).all()
else: # Token Masking
lengths = torch.ones((n_mask,)).long()
# assert is_word_start[-1] == 0
word_starts = is_word_start.nonzero(as_tuple=False)
indices = word_starts[torch.randperm(word_starts.size(0))[:n_mask]].squeeze(1)
mask_random = torch.FloatTensor(n_mask).uniform_() < self.random_ratio
tokens_length = len(tokens)
# assert tokens_length - 1 not in indices
to_keep = torch.ones(tokens_length, dtype=torch.bool)
if self.replace_length == 0:
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
for i in indices.tolist():
tokens[i] = self.mask_tok
random_tok_ids = torch.randint(
0, len(self.vocab), size=(mask_random.sum(),)
).tolist()
for i, rid in zip(indices[mask_random].tolist(), random_tok_ids):
tokens[i] = self.vocab[rid]
if tokens_length - 1 in indices:
uncompleted = indices != tokens_length - 1
indices = indices[uncompleted]
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
# acts as a long length, so spans don't go over the end of doc
is_word_start[-1] = 255
if self.mask_span_distribution is not None:
assert len(lengths.size()) == 1
assert lengths.size() == indices.size()
lengths -= 1 # 1 for the position already masked
while indices.size(0) > 0:
assert lengths.size() == indices.size()
# next position from each word_start
lengths -= is_word_start[indices + 1].long()
uncompleted = lengths >= 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
if self.replace_length != -1:
# delete token: 1 mask/remove per span
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]: 1 mask per token
for i in indices.tolist():
tokens[i] = self.mask_tok
random_tok_ids = torch.randint(
0, len(self.vocab), size=(mask_random.sum(),)
).tolist()
for i, rid in zip(indices[mask_random].tolist(), random_tok_ids):
tokens[i] = self.vocab[rid]
else:
# A bit faster when all lengths are 1
while indices.size(0) > 0:
# to cover whole token
uncompleted = is_word_start[indices + 1] == 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
for i in indices.tolist():
tokens[i] = self.mask_tok
random_tok_ids = torch.randint(
0, len(self.vocab), size=(mask_random.sum(),)
).tolist()
for i, rid in zip(indices[mask_random].tolist(), random_tok_ids):
tokens[i] = self.vocab[rid]
# assert tokens_length - 1 not in indices
tokens = [tok for tok, keep in zip(tokens, to_keep.tolist()) if keep is True]
if n_insert > 0:
tokens = self.insertion_noise(tokens, n_insert / len(tokens))
return tokens
def insertion_noise(self, tokens, p=1.0):
n_tokens = len(tokens)
n_insert = math.ceil(n_tokens * p)
if n_insert == 0:
return tokens
n_random = math.ceil(n_insert * self.random_ratio)
noise_indices = np.random.permutation(n_tokens + n_insert)[:n_insert]
noise_mask = np.zeros(shape=(n_tokens + n_insert,), dtype=bool)
noise_mask[noise_indices] = 1
result = np.empty(shape=(n_tokens + n_insert,), dtype=object)
result[noise_indices[n_random:]] = self.mask_tok
if n_random > 0:
result[noise_indices[:n_random]] = np.random.choice(
self.vocab, size=n_random
)
result[~noise_mask] = tokens
assert all([item is not None for item in result]), "Error when inserting noise."
return result.tolist()
def rolling_noise(self, tokens, p=1.0):
if np.random.random() >= p:
return tokens
offset = np.random.randint(0, max(1, len(tokens) - 1) + 1)
return tokens[offset:] + tokens[0:offset]
def apply(self, tokens):
if self.permute_sent_ratio > 0.0:
tokens = self.permute_sentences(tokens, self.permute_sent_ratio)
if self.mask_ratio > 0.0:
tokens = self.whole_word_mask(tokens, self.mask_ratio)
if self.insert_ratio > 0.0:
tokens = self.insertion_noise(tokens, self.insert_ratio)
if self.rotate_ratio > 0.0:
tokens = self.rolling_noise(tokens, self.rotate_ratio)
return tokens
def __repr__(self):
cls_name = type(self).__name__
kwargs = {}
if self.permute_sent_ratio > 0.0:
kwargs["permute_sent_ratio"] = self.permute_sent_ratio
kwargs["full_stop_token"] = self.full_stop_token
if self.insert_ratio > 0.0:
kwargs["insert_ratio"] = self.insert_ratio
if self.rotate_ratio > 0.0:
kwargs["rotate_ratio"] = self.rotate_ratio
if self.random_ratio > 0.0:
kwargs["random_ratio"] = self.random_ratio
if self.mask_ratio > 0.0:
kwargs["mask_ratio"] = self.mask_ratio
kwargs["mask_length"] = self.mask_length
kwargs["poisson_lambda"] = self.poisson_lambda
kwargs["replace_length"] = self.replace_length
cls_args = ", ".join([f"{kw}={arg}" for kw, arg in kwargs.items()])
return "{}({})".format(cls_name, cls_args)
@register_transform(name="bart")
class BARTNoiseTransform(Transform):
def __init__(self, opts):
super().__init__(opts)
def _set_seed(self, seed):
"""set seed to ensure reproducibility."""
BARTNoising.set_random_seed(seed)
@classmethod
def add_options(cls, parser):
"""Avalilable options relate to BART."""
group = parser.add_argument_group("Transform/BART")
group.add(
"--permute_sent_ratio",
"-permute_sent_ratio",
type=float,
default=0.0,
help="Permute this proportion of sentences "
"(boundaries defined by {}) in all inputs.".format(
DefaultTokens.SENT_FULL_STOPS
),
)
group.add(
"--rotate_ratio",
"-rotate_ratio",
type=float,
default=0.0,
help="Rotate this proportion of inputs.",
)
group.add(
"--insert_ratio",
"-insert_ratio",
type=float,
default=0.0,
help="Insert this percentage of additional random tokens.",
)
group.add(
"--random_ratio",
"-random_ratio",
type=float,
default=0.0,
help="Instead of using {}, use random token "
"this often.".format(DefaultTokens.MASK),
)
group.add(
"--mask_ratio",
"-mask_ratio",
type=float,
default=0.0,
help="Fraction of words/subwords that will be masked.",
)
group.add(
"--mask_length",
"-mask_length",
type=str,
default="subword",
choices=["subword", "word", "span-poisson"],
help="Length of masking window to apply.",
)
group.add(
"--poisson_lambda",
"-poisson_lambda",
type=float,
default=3.0,
help="Lambda for Poisson distribution to sample span length "
"if `-mask_length` set to span-poisson.",
)
group.add(
"--replace_length",
"-replace_length",
type=int,
default=-1,
choices=[-1, 0, 1],
help="When masking N tokens, replace with 0, 1, "
"or N tokens. (use -1 for N)",
)
@classmethod
def require_vocab(cls):
"""Override this method to inform it need vocab to start."""
return True
def warm_up(self, vocabs):
super().warm_up(vocabs)
subword_type = self.opts.src_subword_type
if self.opts.mask_length == "subword":
if subword_type == "none":
raise ValueError(
f"src_subword_type={subword_type} incompatible with "
f"mask_length={self.opts.mask_length}!"
)
is_joiner = (subword_type == "bpe") if subword_type != "none" else None
self.bart_noise = BARTNoising(
self.vocabs["src"].ids_to_tokens,
mask_tok=DefaultTokens.MASK,
mask_ratio=self.opts.mask_ratio,
insert_ratio=self.opts.insert_ratio,
permute_sent_ratio=self.opts.permute_sent_ratio,
poisson_lambda=self.opts.poisson_lambda,
replace_length=self.opts.replace_length,
rotate_ratio=self.opts.rotate_ratio,
mask_length=self.opts.mask_length,
random_ratio=self.opts.random_ratio,
is_joiner=is_joiner,
)
def apply(self, example, is_train=False, stats=None, **kwargs):
"""Apply BART noise to src side tokens."""
if is_train:
src = self.bart_noise.apply(example["src"])
example["src"] = src
return example
def _repr_args(self):
"""Return str represent key arguments for BART."""
return repr(self.bart_noise)
|