File size: 7,688 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from onmt.utils.logging import logger
from onmt.transforms import register_transform
from .transform import Transform
from rapidfuzz import fuzz, process
import numpy as np
import time
class FuzzyMatcher(object):
"""Class for creating and setting up fuzzy matchers."""
def __init__(
self,
tm_path,
corpus_ratio,
threshold=70,
tm_delimiter="\t",
fuzzy_token="⦅fuzzy⦆",
tm_unit_min_lentgh=4,
tm_unit_max_length=70,
):
self.threshold = threshold
self.corpus_ratio = corpus_ratio
self.tm_delimiter = tm_delimiter
self.fuzzy_token = fuzzy_token
self.tm_unit_min_length = tm_unit_min_lentgh
self.tm_unit_max_length = tm_unit_max_length
self.internal_tm = self._create_tm(tm_path)
def _create_tm(self, tm_path):
"""The TM should be a utf-8 text file with each line
containing a source sentence and its translation, separated
by the `self.tm_delimiter`. A TM size of 200k-250k pairs should
provide enough matches and good performance, but this may
depend on overall system specs (RAM, CPU)
"""
src_segments, tgt_segments = list(), list()
with open(tm_path, mode="r", encoding="utf-8") as file:
pairs = file.readlines()
for pair in pairs:
source, target = map(str, pair.split(self.tm_delimiter))
# Filter out very short or very long sentences
# from the TM for better performance
if (
len(source) < self.tm_unit_min_length
or len(source) > self.tm_unit_max_length
):
continue
src_segments.append(source.strip())
tgt_segments.append(target.strip())
logger.debug(
f"Translation Memory size for FuzzyMatch transform: " f"{len(src_segments)}"
)
return [src_segments, tgt_segments]
def _get_batch_matches(self, batch):
logger.debug(f"Starting fuzzy matching on {len(batch)} examples")
fuzzy_count = 0
start = time.time()
augmented = list()
# We split the `batch` and perform fuzzy matching
# in smaller chunks of 10.000 examples in order to
# reduce memory usage.
# Perfomance is not affected.
chunk_size = 10000
mini_batches = np.array_split(
batch, len(batch) // chunk_size if len(batch) > chunk_size else 1
)
for mini_batch in mini_batches:
plist = list(mini_batch)
if fuzzy_count >= len(batch) * self.corpus_ratio:
augmented.extend(plist)
continue
results = process.cdist(
plist,
self.internal_tm[0],
scorer=fuzz.ratio,
dtype=np.uint8,
score_cutoff=self.threshold,
workers=-1,
)
matches = np.any(results, 1)
argmax = np.argmax(results, axis=1)
for idx, s in enumerate(plist):
# Probably redundant but let's be safe
# in case some examples are already fuzzied
# (e.g. from another pipeline or workflow)
if self.fuzzy_token in s:
continue
# We don't want exact matches
if matches[idx] and results[idx][argmax[idx]] < 100:
if fuzzy_count >= len(batch) * self.corpus_ratio:
break
plist[idx] = s + self.fuzzy_token + self.internal_tm[1][argmax[idx]]
fuzzy_count += 1
augmented.extend(plist)
end = time.time()
logger.debug(
f"FuzzyMatch Transform: Added {fuzzy_count} " f"fuzzies in {end-start} secs"
)
return augmented
@register_transform(name="fuzzymatch")
class FuzzyMatchTransform(Transform):
"""Perform fuzzy matching against a translation memory and
augment source examples with target matches for Neural Fuzzy Repair.
:cite:`bulte-tezcan-2019-neural`
"""
def __init__(self, opts):
super().__init__(opts)
@classmethod
def add_options(cls, parser):
"""Options for fuzzy matching."""
group = parser.add_argument_group("Transform/FuzzyMatching")
group.add("--tm_path", "-tm_path", type=str, help="Path to a flat text TM.")
group.add(
"--fuzzy_corpus_ratio",
"-fuzzy_corpus_ratio",
type=float,
default=0.1,
help="Ratio of corpus to augment with fuzzy matches.",
)
group.add(
"--fuzzy_threshold",
"-fuzzy_threshold",
type=int,
default=70,
help="The fuzzy matching threshold.",
)
group.add(
"--tm_delimiter",
"-tm_delimiter",
type=str,
default="\t",
help="The delimiter used in the flat text TM.",
)
group.add(
"--fuzzy_token",
"-fuzzy_token",
type=str,
default="⦅fuzzy⦆",
help="The fuzzy token to be added with the matches.",
)
group.add(
"--fuzzymatch_min_length",
"-fuzzymatch_min_length",
type=int,
default=4,
help="Min length for TM entries and examples to match.",
)
group.add(
"--fuzzymatch_max_length",
"-fuzzymatch_max_length",
type=int,
default=70,
help="Max length for TM entries and examples to match.",
)
def _parse_opts(self):
self.tm_path = self.opts.tm_path
self.fuzzy_corpus_ratio = self.opts.fuzzy_corpus_ratio
self.fuzzy_threshold = self.opts.fuzzy_threshold
self.tm_delimiter = self.opts.tm_delimiter
self.fuzzy_token = self.opts.fuzzy_token
self.fuzzymatch_min_length = self.opts.fuzzymatch_min_length
self.fuzzymatch_max_length = self.opts.fuzzymatch_max_length
@classmethod
def get_specials(cls, opts):
"""Add the fuzzy match token to the src vocab."""
return ([opts.fuzzy_token], list())
def warm_up(self, vocabs=None):
"""Create the fuzzy matcher."""
super().warm_up(None)
self.matcher = FuzzyMatcher(
self.tm_path,
self.fuzzy_corpus_ratio,
self.fuzzy_threshold,
self.tm_delimiter,
self.fuzzy_token,
self.fuzzymatch_min_length,
self.fuzzymatch_max_length,
)
def apply(self, example, is_train=False, stats=None, **kwargs):
return example
def batch_apply(self, batch, is_train=False, stats=None, **kwargs):
src_segments = list()
for ex, _, _ in batch:
# Apply a basic filtering to leave out very short or very long
# sentences and speed up things a bit during fuzzy matching
if (
len(" ".join(ex["src"])) > self.fuzzymatch_min_length
and len(" ".join(ex["src"])) < self.fuzzymatch_max_length
):
src_segments.append(" ".join(ex["src"]))
else:
src_segments.append("")
fuzzied_src = self.matcher._get_batch_matches(src_segments)
assert len(src_segments) == len(fuzzied_src)
for idx, (example, _, _) in enumerate(batch):
if fuzzied_src[idx] != "":
example["src"] = fuzzied_src[idx].split()
return batch
|