File size: 16,708 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
"""
This includes: LossComputeBase and the standard NMTLossCompute, and
               sharded loss compute stuff.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import onmt
from onmt.modules.sparse_losses import SparsemaxLoss
from onmt.modules.sparse_activations import LogSparsemax
from onmt.constants import ModelTask, DefaultTokens
from onmt.modules.copy_generator import collapse_copy_scores
from onmt.model_builder import load_test_model

try:
    import ctranslate2
except ImportError:
    pass  # this is tested when importing for loading a LM


class LossCompute(nn.Module):
    """
    Class for managing efficient loss computation. Handles
    accumulating multiple loss computations.

    Args:
        criterion (:obj:`nn. loss function`) : NLLoss or customed loss
        generator (:obj:`nn.Module`) :
        copy_attn (bool): whether copy attention mechanism is on/off
        lambda_coverage: Hyper-param to apply coverage attention if any
        lambda_align: Hyper-param for alignment loss
        tgt_shift_index (int): 1 for NMT, 0 for LM
        vocab: target vocab (for copy attention score calculation)
             module that maps the output of the decoder to a
             distribution over the target vocabulary.
        lm_generator (:obj:`ctranslate2.Generator`): LM Generator
        lm_prior_lambda (float): weight of LM model in loss
        lm_prior_tau (float): scaler for LM loss
    """

    def __init__(
        self,
        criterion,
        generator,
        copy_attn=False,
        lambda_coverage=0.0,
        lambda_align=0.0,
        tgt_shift_index=1,
        vocab=None,
        lm_generator=None,
        lm_prior_lambda=None,
        lm_prior_tau=None,
        lm_prior_model=None,
    ):
        super(LossCompute, self).__init__()
        self.criterion = criterion
        self.generator = generator
        self.lambda_coverage = lambda_coverage
        self.lambda_align = lambda_align
        self.tgt_shift_index = tgt_shift_index
        self.copy_attn = copy_attn
        self.vocab = vocab  # target vocab for copy_attn need
        self.lm_generator = lm_generator
        self.lm_prior_lambda = lm_prior_lambda
        self.lm_prior_tau = lm_prior_tau
        self.lm_prior_model = lm_prior_model

    @classmethod
    def from_opts(cls, opt, model, vocab, train=True):
        """
        Returns a subclass which wraps around an nn.Module subclass
        (such as nn.NLLLoss) which defines the loss criterion. The LossCompute
        object passes relevant data to a Statistics object which handles
        training/validation logging.
        The Criterion and LossCompute options are triggered by opt settings.
        """
        device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt) else "cpu")

        padding_idx = vocab[DefaultTokens.PAD]
        unk_idx = vocab[DefaultTokens.UNK]

        if opt.lambda_coverage != 0:
            assert opt.coverage_attn, (
                "--coverage_attn needs to be set in "
                "order to use --lambda_coverage != 0"
            )

        tgt_shift_idx = 1 if opt.model_task == ModelTask.SEQ2SEQ else 0

        if opt.copy_attn:
            criterion = onmt.modules.CopyGeneratorLoss(
                len(vocab),
                opt.copy_attn_force,
                unk_index=unk_idx,
                ignore_index=padding_idx,
            )
        else:
            if opt.generator_function == "sparsemax":
                criterion = SparsemaxLoss(ignore_index=padding_idx, reduction="sum")
            else:
                criterion = nn.CrossEntropyLoss(
                    ignore_index=padding_idx,
                    reduction="sum",
                    label_smoothing=opt.label_smoothing,
                )

        lm_prior_lambda = opt.lm_prior_lambda
        lm_prior_tau = opt.lm_prior_tau
        if opt.lm_prior_model:
            if opt.lm_prior_model[-3:] == ".pt":
                opt.gpu = 0
                opt.fp32 = False
                opt.int8 = False
                _, lm_prior_model, lm_model_opt = load_test_model(
                    opt, model_path=opt.lm_prior_model
                )
                lm_prior_model.to(torch.device("cuda", opt.gpu))
                lm_prior_model.eval()
                lm_generator = None
            else:
                lm_prior_model = None
                try:
                    import ctranslate2

                    lm_generator = ctranslate2.Generator(
                        opt.lm_prior_model, device="cuda", compute_type="float16"
                    )
                except ImportError:
                    raise ImportError("Could not import ctranslate2")
        else:
            lm_generator = None
            lm_prior_model = None

        compute = cls(
            criterion,
            model.generator,
            copy_attn=opt.copy_attn,
            lambda_coverage=opt.lambda_coverage,
            lambda_align=opt.lambda_align,
            tgt_shift_index=tgt_shift_idx,
            vocab=vocab,
            lm_generator=lm_generator,
            lm_prior_lambda=lm_prior_lambda,
            lm_prior_tau=lm_prior_tau,
            lm_prior_model=lm_prior_model,
        )
        compute.to(device)

        return compute

    @property
    def padding_idx(self):
        return self.criterion.ignore_index

    def _compute_coverage_loss(self, std_attn, cov_attn, tgt):
        """compute coverage loss"""
        zero_attn = torch.zeros(cov_attn.size()[1:], device=cov_attn.device)
        cov_attn = torch.cat((zero_attn.unsqueeze(0), cov_attn[:-1]), 0)
        covloss = torch.min(std_attn, cov_attn).sum(dim=-1).view(-1)

        covloss[tgt == self.padding_idx] = 0
        return covloss.sum()

    def _compute_alignement_loss(self, align_head, ref_align):
        """Compute loss between 2 partial alignment matrix."""
        # align_head contains value in [0, 1) presenting attn prob,
        # 0 was resulted by the context attention src_pad_mask
        # So, the correspand position in ref_align should also be 0
        # Therefore, clip align_head to > 1e-18 should be bias free.
        align_loss = -align_head.clamp(min=1e-18).log().mul(ref_align).sum()
        align_loss *= self.lambda_align
        return align_loss

    def _compute_copy_loss(self, batch, output, target, align, attns):
        """Compute the copy attention loss.
        Args:
            batch: the current batch.
            output: the predict output from the model.
            target: the validate target to compare output with.
            align:
            attns: dictionary of attention distributions
              `(tgt_len, batch, src_len)`
        Returns:
            A tuple with the loss and raw scores.
        """
        scores = self.generator(
            self._bottle(output), self._bottle(attns["copy"]), batch["src_map"]
        )
        loss = self.criterion(scores, align, target).sum()

        return loss, scores

    def _compute_lm_loss_ct2(self, output, target):
        """
        Compute the loss between MT output and LM output
        https://github.com/cbaziotis/lm-prior-for-nmt/blob/master
        /fairseq_extension/user/lm_prior/lm_prior.py#L131-L133
        """

        # rescale with tau (temperature) and apply the log_softmax.
        scores = self.generator(self._bottle(output)) / self.lm_prior_tau
        scores = F.log_softmax(scores.to(torch.float32), dim=-1)

        src = target.detach().clone()
        src[src == self.vocab[DefaultTokens.EOS]] = self.padding_idx
        src = src[:, :-1, :]
        src_len = src[:, :, 0].ne(self.padding_idx).sum(1)
        # ct2 expects src with lengths without padding
        lm_scores = self.lm_generator.forward_batch(
            ctranslate2.StorageView.from_array(src[:, :, 0].to(torch.int32)),
            ctranslate2.StorageView.from_array(src_len.to(torch.int32)),
            return_log_probs=False,
        )
        lm_scores = torch.as_tensor(lm_scores, device=scores.device)
        # again we use raw probs to rescale with tau and apply log_softmax
        lm_scores = self._bottle(lm_scores) / self.lm_prior_tau
        lm_scores = F.log_softmax(lm_scores.to(torch.float32), dim=-1)
        lm_scores[:, self.vocab[DefaultTokens.UNK]] = -50
        lm_scores[:, self.vocab[DefaultTokens.EOS]] -= 20
        # lm_scores are in log space so log_target=True
        lm_loss = F.kl_div(scores, lm_scores, reduction="none", log_target=True).sum(-1)
        non_padding = self._bottle(output).ne(self.padding_idx)[:, 0]
        lm_loss = lm_loss.masked_select(non_padding).sum()
        lm_loss = lm_loss * (self.lm_prior_tau**2)
        return lm_loss

    def _compute_lm_loss(self, output, target):
        """
        Compute the loss between MT output and LM output
        https://github.com/cbaziotis/lm-prior-for-nmt/blob/master
        /fairseq_extension/user/lm_prior/lm_prior.py#L131-L133
        """
        # rescale with tau (temperature) and apply the log_softmax.
        scores = self.generator(self._bottle(output)) / self.lm_prior_tau
        scores = F.log_softmax(scores.to(torch.float32), dim=-1)

        src = target.detach().clone()
        src[src == self.vocab[DefaultTokens.EOS]] = self.padding_idx
        src = src[:, :-1, :]
        src_len = src[:, :, 0].ne(self.padding_idx).sum(1)
        # ct2 expects src with lengths without padding
        lm_outs, _ = self.lm_prior_model(src, None, src_len, with_align=False)
        lm_scores = (
            self.lm_prior_model.generator(self._bottle(lm_outs)).detach().clone()
            / self.lm_prior_tau
        )
        # again we use raw probs to rescale with tau and apply log_softmax
        lm_scores = F.log_softmax(lm_scores.to(torch.float32), dim=-1)
        lm_scores[:, self.vocab[DefaultTokens.UNK]] = -50
        lm_scores[:, self.vocab[DefaultTokens.EOS]] -= 20
        # lm_scores are in log space so log_target=True
        lm_loss = F.kl_div(scores, lm_scores, reduction="none", log_target=True).sum(-1)
        non_padding = self._bottle(output).ne(self.padding_idx)[:, 0]
        lm_loss = lm_loss.masked_select(non_padding).sum()
        lm_loss = lm_loss * (self.lm_prior_tau**2)
        return lm_loss

    def _bottle(self, _v):
        return _v.view(-1, _v.size(2))

    def _unbottle(self, _v, batch_size):
        return _v.view(-1, batch_size, _v.size(1))

    def ignore_prompt(self, batch):
        """
        Mask the prompt in the target side of the batch examples in order
            to set the loss of the prompt to zero.
        For finetuning on specific tasks.
        The end of the prompt must be indicated by `the DefaultTokens.MASK_BEFORE`
            placeholder.
        The masks are supposed to be properly handled by the loss criterion
            (e.g. nn.CrossEntropyLoss ).

        Args:
            batch: The current batch.
        """
        # Create a mask with zeros at prompt positions and ones at answer postions.
        mask = batch["src"].squeeze(dim=2) == self.padding_idx
        mask = torch.cumsum(mask.int(), 1)
        mask = mask.unsqueeze(-1)
        # Apply the mask on the target side.
        batch["tgt"] *= mask.int()
        # Put the padding token index at the prompt positions.
        batch["tgt"] += self.padding_idx * (1 - mask.int())
        return batch

    def forward(self, batch, output, attns, trunc_start=0, trunc_size=None):
        """Compute the forward loss, supports truncated BPTT for long
        sequences by taking a range in the decoder output sequence to
        back propagate in.
        Range is from `(trunc_start, trunc_start + trunc_size)`.
        Truncation is an approximate efficiency trick to relieve the
        memory required in the RNN buffers.

        Args:
          batch (batch) : batch of labeled examples
          output (:obj:`FloatTensor`) :
              output of decoder model ``(batch, tgt_len, hidden)``
          attns (dict) : dictionary of attention weights
              ``(batch, tgt_len, src_len)``
          trunc_start (int) : starting position of truncation window
          trunc_size (int) : length of truncation window

        Returns:
            A tuple with the loss and a :obj:`onmt.utils.Statistics` instance.
        """

        if trunc_size is None:
            trunc_size = batch["tgt"].size(1) - trunc_start
        # take into account here the tgt_shift_index (0 / 1 = LM/NMT)
        trunc_range = (trunc_start + self.tgt_shift_index, trunc_start + trunc_size)

        target = batch["tgt"][:, trunc_range[0] : trunc_range[1], :]
        output = output[:, trunc_start : trunc_range[1], :].contiguous()

        flat_tgt = target[:, :, 0].contiguous().view(-1)

        if self.copy_attn:
            align = (
                batch["alignment"][:, trunc_range[0] : trunc_range[1]]
                .contiguous()
                .view(-1)
            )
            loss, scores = self._compute_copy_loss(
                batch, output, flat_tgt, align, attns
            )
            scores_data = collapse_copy_scores(
                self._unbottle(scores.clone(), len(batch["srclen"])),
                batch,
                self.vocab,
                None,
            )
            scores_data = self._bottle(scores_data)
            # Correct target copy token instead of <unk>
            # tgt[i] = align[i] + len(tgt_vocab)
            # for i such that tgt[i] == 0 and align[i] != 0
            target_data = flat_tgt.clone()
            unk = self.criterion.unk_index
            correct_mask = (target_data == unk) & (align != unk)
            offset_align = align[correct_mask] + len(self.vocab)
            target_data[correct_mask] += offset_align
            scores = scores_data
            flat_tgt = target_data

        else:
            scores = self.generator(self._bottle(output))
            if isinstance(self.criterion, SparsemaxLoss):
                scores = LogSparsemax(scores.to(torch.float32), dim=-1)
            loss = self.criterion(scores.to(torch.float32), flat_tgt)

            if self.lambda_align != 0.0:
                align_head = attns["align"]
                if align_head.dtype != loss.dtype:  # Fix FP16
                    align_head = align_head.to(loss.dtype)
                align_idx = batch["align"]
                batch_size, pad_tgt_size, _ = batch["tgt"].size()
                _, pad_src_size, _ = batch["src"].size()
                align_matrix_size = [batch_size, pad_tgt_size, pad_src_size]
                ref_align = onmt.utils.make_batch_align_matrix(
                    align_idx, align_matrix_size, normalize=True
                )
                ref_align = ref_align[:, trunc_range[0] : trunc_range[1], :]
                if ref_align.dtype != loss.dtype:
                    ref_align = ref_align.to(loss.dtype)
                align_loss = self._compute_alignement_loss(
                    align_head=align_head, ref_align=ref_align
                )
                loss += align_loss

        if self.lambda_coverage != 0.0:
            coverage_loss = self._compute_coverage_loss(
                attns["std"], attns["coverage"], flat_tgt
            )
            loss += coverage_loss

        if self.lm_generator is not None:
            lm_loss = self._compute_lm_loss_ct2(output, batch["tgt"])
            loss = loss + lm_loss * self.lm_prior_lambda

        if self.lm_prior_model is not None:
            lm_loss = self._compute_lm_loss(output, batch["tgt"])
            loss = loss + lm_loss * self.lm_prior_lambda

        n_sents = len(batch["srclen"]) if trunc_start == 0 else 0
        stats = self._stats(n_sents, loss.sum().item(), scores, flat_tgt)

        return loss, stats

    def _stats(self, bsz, loss, scores, target):
        """
        Args:
            loss (int): the loss computed by the loss criterion.
            scores (:obj:`FloatTensor`): a score for each possible output
            target (:obj:`FloatTensor`): true targets

        Returns:
            :obj:`onmt.utils.Statistics` : statistics for this batch.
        """
        pred = scores.max(1)[1]
        non_padding = target.ne(self.padding_idx)
        num_correct = pred.eq(target).masked_select(non_padding).sum().item()
        num_non_padding = non_padding.sum().item()
        n_batchs = 1 if bsz else 0
        # in the case criterion reduction is None then we need
        # to sum the loss of each sentence in the batch
        return onmt.utils.Statistics(
            loss=loss,
            n_batchs=n_batchs,
            n_sents=bsz,
            n_words=num_non_padding,
            n_correct=num_correct,
        )