File size: 16,708 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
"""
This includes: LossComputeBase and the standard NMTLossCompute, and
sharded loss compute stuff.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import onmt
from onmt.modules.sparse_losses import SparsemaxLoss
from onmt.modules.sparse_activations import LogSparsemax
from onmt.constants import ModelTask, DefaultTokens
from onmt.modules.copy_generator import collapse_copy_scores
from onmt.model_builder import load_test_model
try:
import ctranslate2
except ImportError:
pass # this is tested when importing for loading a LM
class LossCompute(nn.Module):
"""
Class for managing efficient loss computation. Handles
accumulating multiple loss computations.
Args:
criterion (:obj:`nn. loss function`) : NLLoss or customed loss
generator (:obj:`nn.Module`) :
copy_attn (bool): whether copy attention mechanism is on/off
lambda_coverage: Hyper-param to apply coverage attention if any
lambda_align: Hyper-param for alignment loss
tgt_shift_index (int): 1 for NMT, 0 for LM
vocab: target vocab (for copy attention score calculation)
module that maps the output of the decoder to a
distribution over the target vocabulary.
lm_generator (:obj:`ctranslate2.Generator`): LM Generator
lm_prior_lambda (float): weight of LM model in loss
lm_prior_tau (float): scaler for LM loss
"""
def __init__(
self,
criterion,
generator,
copy_attn=False,
lambda_coverage=0.0,
lambda_align=0.0,
tgt_shift_index=1,
vocab=None,
lm_generator=None,
lm_prior_lambda=None,
lm_prior_tau=None,
lm_prior_model=None,
):
super(LossCompute, self).__init__()
self.criterion = criterion
self.generator = generator
self.lambda_coverage = lambda_coverage
self.lambda_align = lambda_align
self.tgt_shift_index = tgt_shift_index
self.copy_attn = copy_attn
self.vocab = vocab # target vocab for copy_attn need
self.lm_generator = lm_generator
self.lm_prior_lambda = lm_prior_lambda
self.lm_prior_tau = lm_prior_tau
self.lm_prior_model = lm_prior_model
@classmethod
def from_opts(cls, opt, model, vocab, train=True):
"""
Returns a subclass which wraps around an nn.Module subclass
(such as nn.NLLLoss) which defines the loss criterion. The LossCompute
object passes relevant data to a Statistics object which handles
training/validation logging.
The Criterion and LossCompute options are triggered by opt settings.
"""
device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt) else "cpu")
padding_idx = vocab[DefaultTokens.PAD]
unk_idx = vocab[DefaultTokens.UNK]
if opt.lambda_coverage != 0:
assert opt.coverage_attn, (
"--coverage_attn needs to be set in "
"order to use --lambda_coverage != 0"
)
tgt_shift_idx = 1 if opt.model_task == ModelTask.SEQ2SEQ else 0
if opt.copy_attn:
criterion = onmt.modules.CopyGeneratorLoss(
len(vocab),
opt.copy_attn_force,
unk_index=unk_idx,
ignore_index=padding_idx,
)
else:
if opt.generator_function == "sparsemax":
criterion = SparsemaxLoss(ignore_index=padding_idx, reduction="sum")
else:
criterion = nn.CrossEntropyLoss(
ignore_index=padding_idx,
reduction="sum",
label_smoothing=opt.label_smoothing,
)
lm_prior_lambda = opt.lm_prior_lambda
lm_prior_tau = opt.lm_prior_tau
if opt.lm_prior_model:
if opt.lm_prior_model[-3:] == ".pt":
opt.gpu = 0
opt.fp32 = False
opt.int8 = False
_, lm_prior_model, lm_model_opt = load_test_model(
opt, model_path=opt.lm_prior_model
)
lm_prior_model.to(torch.device("cuda", opt.gpu))
lm_prior_model.eval()
lm_generator = None
else:
lm_prior_model = None
try:
import ctranslate2
lm_generator = ctranslate2.Generator(
opt.lm_prior_model, device="cuda", compute_type="float16"
)
except ImportError:
raise ImportError("Could not import ctranslate2")
else:
lm_generator = None
lm_prior_model = None
compute = cls(
criterion,
model.generator,
copy_attn=opt.copy_attn,
lambda_coverage=opt.lambda_coverage,
lambda_align=opt.lambda_align,
tgt_shift_index=tgt_shift_idx,
vocab=vocab,
lm_generator=lm_generator,
lm_prior_lambda=lm_prior_lambda,
lm_prior_tau=lm_prior_tau,
lm_prior_model=lm_prior_model,
)
compute.to(device)
return compute
@property
def padding_idx(self):
return self.criterion.ignore_index
def _compute_coverage_loss(self, std_attn, cov_attn, tgt):
"""compute coverage loss"""
zero_attn = torch.zeros(cov_attn.size()[1:], device=cov_attn.device)
cov_attn = torch.cat((zero_attn.unsqueeze(0), cov_attn[:-1]), 0)
covloss = torch.min(std_attn, cov_attn).sum(dim=-1).view(-1)
covloss[tgt == self.padding_idx] = 0
return covloss.sum()
def _compute_alignement_loss(self, align_head, ref_align):
"""Compute loss between 2 partial alignment matrix."""
# align_head contains value in [0, 1) presenting attn prob,
# 0 was resulted by the context attention src_pad_mask
# So, the correspand position in ref_align should also be 0
# Therefore, clip align_head to > 1e-18 should be bias free.
align_loss = -align_head.clamp(min=1e-18).log().mul(ref_align).sum()
align_loss *= self.lambda_align
return align_loss
def _compute_copy_loss(self, batch, output, target, align, attns):
"""Compute the copy attention loss.
Args:
batch: the current batch.
output: the predict output from the model.
target: the validate target to compare output with.
align:
attns: dictionary of attention distributions
`(tgt_len, batch, src_len)`
Returns:
A tuple with the loss and raw scores.
"""
scores = self.generator(
self._bottle(output), self._bottle(attns["copy"]), batch["src_map"]
)
loss = self.criterion(scores, align, target).sum()
return loss, scores
def _compute_lm_loss_ct2(self, output, target):
"""
Compute the loss between MT output and LM output
https://github.com/cbaziotis/lm-prior-for-nmt/blob/master
/fairseq_extension/user/lm_prior/lm_prior.py#L131-L133
"""
# rescale with tau (temperature) and apply the log_softmax.
scores = self.generator(self._bottle(output)) / self.lm_prior_tau
scores = F.log_softmax(scores.to(torch.float32), dim=-1)
src = target.detach().clone()
src[src == self.vocab[DefaultTokens.EOS]] = self.padding_idx
src = src[:, :-1, :]
src_len = src[:, :, 0].ne(self.padding_idx).sum(1)
# ct2 expects src with lengths without padding
lm_scores = self.lm_generator.forward_batch(
ctranslate2.StorageView.from_array(src[:, :, 0].to(torch.int32)),
ctranslate2.StorageView.from_array(src_len.to(torch.int32)),
return_log_probs=False,
)
lm_scores = torch.as_tensor(lm_scores, device=scores.device)
# again we use raw probs to rescale with tau and apply log_softmax
lm_scores = self._bottle(lm_scores) / self.lm_prior_tau
lm_scores = F.log_softmax(lm_scores.to(torch.float32), dim=-1)
lm_scores[:, self.vocab[DefaultTokens.UNK]] = -50
lm_scores[:, self.vocab[DefaultTokens.EOS]] -= 20
# lm_scores are in log space so log_target=True
lm_loss = F.kl_div(scores, lm_scores, reduction="none", log_target=True).sum(-1)
non_padding = self._bottle(output).ne(self.padding_idx)[:, 0]
lm_loss = lm_loss.masked_select(non_padding).sum()
lm_loss = lm_loss * (self.lm_prior_tau**2)
return lm_loss
def _compute_lm_loss(self, output, target):
"""
Compute the loss between MT output and LM output
https://github.com/cbaziotis/lm-prior-for-nmt/blob/master
/fairseq_extension/user/lm_prior/lm_prior.py#L131-L133
"""
# rescale with tau (temperature) and apply the log_softmax.
scores = self.generator(self._bottle(output)) / self.lm_prior_tau
scores = F.log_softmax(scores.to(torch.float32), dim=-1)
src = target.detach().clone()
src[src == self.vocab[DefaultTokens.EOS]] = self.padding_idx
src = src[:, :-1, :]
src_len = src[:, :, 0].ne(self.padding_idx).sum(1)
# ct2 expects src with lengths without padding
lm_outs, _ = self.lm_prior_model(src, None, src_len, with_align=False)
lm_scores = (
self.lm_prior_model.generator(self._bottle(lm_outs)).detach().clone()
/ self.lm_prior_tau
)
# again we use raw probs to rescale with tau and apply log_softmax
lm_scores = F.log_softmax(lm_scores.to(torch.float32), dim=-1)
lm_scores[:, self.vocab[DefaultTokens.UNK]] = -50
lm_scores[:, self.vocab[DefaultTokens.EOS]] -= 20
# lm_scores are in log space so log_target=True
lm_loss = F.kl_div(scores, lm_scores, reduction="none", log_target=True).sum(-1)
non_padding = self._bottle(output).ne(self.padding_idx)[:, 0]
lm_loss = lm_loss.masked_select(non_padding).sum()
lm_loss = lm_loss * (self.lm_prior_tau**2)
return lm_loss
def _bottle(self, _v):
return _v.view(-1, _v.size(2))
def _unbottle(self, _v, batch_size):
return _v.view(-1, batch_size, _v.size(1))
def ignore_prompt(self, batch):
"""
Mask the prompt in the target side of the batch examples in order
to set the loss of the prompt to zero.
For finetuning on specific tasks.
The end of the prompt must be indicated by `the DefaultTokens.MASK_BEFORE`
placeholder.
The masks are supposed to be properly handled by the loss criterion
(e.g. nn.CrossEntropyLoss ).
Args:
batch: The current batch.
"""
# Create a mask with zeros at prompt positions and ones at answer postions.
mask = batch["src"].squeeze(dim=2) == self.padding_idx
mask = torch.cumsum(mask.int(), 1)
mask = mask.unsqueeze(-1)
# Apply the mask on the target side.
batch["tgt"] *= mask.int()
# Put the padding token index at the prompt positions.
batch["tgt"] += self.padding_idx * (1 - mask.int())
return batch
def forward(self, batch, output, attns, trunc_start=0, trunc_size=None):
"""Compute the forward loss, supports truncated BPTT for long
sequences by taking a range in the decoder output sequence to
back propagate in.
Range is from `(trunc_start, trunc_start + trunc_size)`.
Truncation is an approximate efficiency trick to relieve the
memory required in the RNN buffers.
Args:
batch (batch) : batch of labeled examples
output (:obj:`FloatTensor`) :
output of decoder model ``(batch, tgt_len, hidden)``
attns (dict) : dictionary of attention weights
``(batch, tgt_len, src_len)``
trunc_start (int) : starting position of truncation window
trunc_size (int) : length of truncation window
Returns:
A tuple with the loss and a :obj:`onmt.utils.Statistics` instance.
"""
if trunc_size is None:
trunc_size = batch["tgt"].size(1) - trunc_start
# take into account here the tgt_shift_index (0 / 1 = LM/NMT)
trunc_range = (trunc_start + self.tgt_shift_index, trunc_start + trunc_size)
target = batch["tgt"][:, trunc_range[0] : trunc_range[1], :]
output = output[:, trunc_start : trunc_range[1], :].contiguous()
flat_tgt = target[:, :, 0].contiguous().view(-1)
if self.copy_attn:
align = (
batch["alignment"][:, trunc_range[0] : trunc_range[1]]
.contiguous()
.view(-1)
)
loss, scores = self._compute_copy_loss(
batch, output, flat_tgt, align, attns
)
scores_data = collapse_copy_scores(
self._unbottle(scores.clone(), len(batch["srclen"])),
batch,
self.vocab,
None,
)
scores_data = self._bottle(scores_data)
# Correct target copy token instead of <unk>
# tgt[i] = align[i] + len(tgt_vocab)
# for i such that tgt[i] == 0 and align[i] != 0
target_data = flat_tgt.clone()
unk = self.criterion.unk_index
correct_mask = (target_data == unk) & (align != unk)
offset_align = align[correct_mask] + len(self.vocab)
target_data[correct_mask] += offset_align
scores = scores_data
flat_tgt = target_data
else:
scores = self.generator(self._bottle(output))
if isinstance(self.criterion, SparsemaxLoss):
scores = LogSparsemax(scores.to(torch.float32), dim=-1)
loss = self.criterion(scores.to(torch.float32), flat_tgt)
if self.lambda_align != 0.0:
align_head = attns["align"]
if align_head.dtype != loss.dtype: # Fix FP16
align_head = align_head.to(loss.dtype)
align_idx = batch["align"]
batch_size, pad_tgt_size, _ = batch["tgt"].size()
_, pad_src_size, _ = batch["src"].size()
align_matrix_size = [batch_size, pad_tgt_size, pad_src_size]
ref_align = onmt.utils.make_batch_align_matrix(
align_idx, align_matrix_size, normalize=True
)
ref_align = ref_align[:, trunc_range[0] : trunc_range[1], :]
if ref_align.dtype != loss.dtype:
ref_align = ref_align.to(loss.dtype)
align_loss = self._compute_alignement_loss(
align_head=align_head, ref_align=ref_align
)
loss += align_loss
if self.lambda_coverage != 0.0:
coverage_loss = self._compute_coverage_loss(
attns["std"], attns["coverage"], flat_tgt
)
loss += coverage_loss
if self.lm_generator is not None:
lm_loss = self._compute_lm_loss_ct2(output, batch["tgt"])
loss = loss + lm_loss * self.lm_prior_lambda
if self.lm_prior_model is not None:
lm_loss = self._compute_lm_loss(output, batch["tgt"])
loss = loss + lm_loss * self.lm_prior_lambda
n_sents = len(batch["srclen"]) if trunc_start == 0 else 0
stats = self._stats(n_sents, loss.sum().item(), scores, flat_tgt)
return loss, stats
def _stats(self, bsz, loss, scores, target):
"""
Args:
loss (int): the loss computed by the loss criterion.
scores (:obj:`FloatTensor`): a score for each possible output
target (:obj:`FloatTensor`): true targets
Returns:
:obj:`onmt.utils.Statistics` : statistics for this batch.
"""
pred = scores.max(1)[1]
non_padding = target.ne(self.padding_idx)
num_correct = pred.eq(target).masked_select(non_padding).sum().item()
num_non_padding = non_padding.sum().item()
n_batchs = 1 if bsz else 0
# in the case criterion reduction is None then we need
# to sum the loss of each sentence in the batch
return onmt.utils.Statistics(
loss=loss,
n_batchs=n_batchs,
n_sents=bsz,
n_words=num_non_padding,
n_correct=num_correct,
)
|