File size: 1,645 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Implementation of "Convolutional Sequence to Sequence Learning"
"""
import torch.nn as nn

from onmt.encoders.encoder import EncoderBase
from onmt.utils.cnn_factory import shape_transform, StackedCNN

SCALE_WEIGHT = 0.5**0.5


class CNNEncoder(EncoderBase):
    """Encoder based on "Convolutional Sequence to Sequence Learning"
    :cite:`DBLP:journals/corr/GehringAGYD17`.
    """

    def __init__(self, num_layers, hidden_size, cnn_kernel_width, dropout, embeddings):
        super(CNNEncoder, self).__init__()

        self.embeddings = embeddings
        input_size = embeddings.embedding_size
        self.linear = nn.Linear(input_size, hidden_size)
        self.cnn = StackedCNN(num_layers, hidden_size, cnn_kernel_width, dropout)

    @classmethod
    def from_opt(cls, opt, embeddings):
        """Alternate constructor."""
        return cls(
            opt.enc_layers,
            opt.enc_hid_size,
            opt.cnn_kernel_width,
            opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
            embeddings,
        )

    def forward(self, input, src_len=None, hidden=None):
        """See :func:`EncoderBase.forward()`"""
        # batch x len x dim
        emb = self.embeddings(input)

        emb_reshape = emb.view(emb.size(0) * emb.size(1), -1)
        emb_remap = self.linear(emb_reshape)
        emb_remap = emb_remap.view(emb.size(0), emb.size(1), -1)
        emb_remap = shape_transform(emb_remap)
        out = self.cnn(emb_remap)

        return out.squeeze(3), emb_remap.squeeze(3), src_len

    def update_dropout(self, dropout, attention_dropout=None):
        self.cnn.dropout.p = dropout