File size: 12,567 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
"""Define GGNN-based encoders."""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from onmt.encoders.encoder import EncoderBase
class GGNNAttrProxy(object):
"""
Translates index lookups into attribute lookups.
To implement some trick which able to use list of nn.Module in a nn.Module
see https://discuss.pytorch.org/t/list-of-nn-module-in-a-nn-module/219/2
"""
def __init__(self, module, prefix):
self.module = module
self.prefix = prefix
def __getitem__(self, i):
return getattr(self.module, self.prefix + str(i))
class GGNNPropogator(nn.Module):
"""
Gated Propogator for GGNN
Using LSTM gating mechanism
"""
def __init__(self, state_dim, n_node, n_edge_types):
super(GGNNPropogator, self).__init__()
self.n_node = n_node
self.n_edge_types = n_edge_types
self.reset_gate = nn.Sequential(
nn.Linear(state_dim * 3, state_dim), nn.Sigmoid()
)
self.update_gate = nn.Sequential(
nn.Linear(state_dim * 3, state_dim), nn.Sigmoid()
)
self.tansform = nn.Sequential(
nn.Linear(state_dim * 3, state_dim), nn.LeakyReLU()
)
def forward(self, state_in, state_out, state_cur, edges, nodes):
edges_in = edges[:, :, : nodes * self.n_edge_types]
edges_out = edges[:, :, nodes * self.n_edge_types :]
a_in = torch.bmm(edges_in, state_in)
a_out = torch.bmm(edges_out, state_out)
a = torch.cat((a_in, a_out, state_cur), 2)
r = self.reset_gate(a)
z = self.update_gate(a)
joined_input = torch.cat((a_in, a_out, r * state_cur), 2)
h_hat = self.tansform(joined_input)
prop_out = (1 - z) * state_cur + z * h_hat
return prop_out
class GGNNEncoder(EncoderBase):
"""A gated graph neural network configured as an encoder.
Based on github.com/JamesChuanggg/ggnn.pytorch.git,
which is based on the paper "Gated Graph Sequence Neural Networks"
by Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.
Args:
rnn_type (str):
style of recurrent unit to use, one of [LSTM]
src_ggnn_size (int) : Size of token-to-node embedding input
src_word_vec_size (int) : Size of token-to-node embedding output
state_dim (int) : Number of state dimensions in nodes
n_edge_types (int) : Number of edge types
bidir_edges (bool): True if reverse edges should be autocreated
n_node (int) : Max nodes in graph
bridge_extra_node (bool): True indicates only 1st extra node
(after token listing) should be used for decoder init.
n_steps (int): Steps to advance graph encoder for stabilization
src_vocab (int): Path to source vocabulary.(The ggnn uses src_vocab
during training because the graph is built using edge information
which requires parsing the input sequence.)
"""
def __init__(
self,
rnn_type,
src_word_vec_size,
src_ggnn_size,
state_dim,
bidir_edges,
n_edge_types,
n_node,
bridge_extra_node,
n_steps,
src_vocab,
):
super(GGNNEncoder, self).__init__()
self.src_word_vec_size = src_word_vec_size
self.src_ggnn_size = src_ggnn_size
self.state_dim = state_dim
self.n_edge_types = n_edge_types
self.n_node = n_node
self.n_steps = n_steps
self.bidir_edges = bidir_edges
self.bridge_extra_node = bridge_extra_node
for i in range(self.n_edge_types):
# incoming and outgoing edge embedding
in_fc = nn.Linear(self.state_dim, self.state_dim)
out_fc = nn.Linear(self.state_dim, self.state_dim)
self.add_module("in_{}".format(i), in_fc)
self.add_module("out_{}".format(i), out_fc)
self.in_fcs = GGNNAttrProxy(self, "in_")
self.out_fcs = GGNNAttrProxy(self, "out_")
# Find vocab data for tree builting
f = open(src_vocab, "r")
idx = 0
self.COMMA = -1
self.DELIMITER = -1
self.idx2num = []
found_n_minus_one = False
for ln in f:
ln = ln.strip("\n")
ln = ln.split("\t")[0]
if idx == 0 and ln != "<unk>":
idx += 1
self.idx2num.append(-1)
if idx == 1 and ln != "<blank>":
idx += 1
self.idx2num.append(-1)
if ln == ",":
self.COMMA = idx
if ln == "<EOT>":
self.DELIMITER = idx
if ln.isdigit():
self.idx2num.append(int(ln))
if int(ln) == n_node - 1:
found_n_minus_one = True
else:
self.idx2num.append(-1)
idx += 1
assert self.COMMA >= 0, "GGNN src_vocab must include ',' character"
assert self.DELIMITER >= 0, "GGNN src_vocab must include <EOT> token"
assert (
found_n_minus_one
), "GGNN src_vocab must include node numbers for edge connections"
# Propogation Model
self.propogator = GGNNPropogator(self.state_dim, self.n_node, self.n_edge_types)
self._initialization()
# Initialize the bridge layer
self._initialize_bridge(rnn_type, self.state_dim, 1)
# Token embedding
if src_ggnn_size > 0:
self.embed = nn.Sequential(
nn.Linear(src_ggnn_size, src_word_vec_size), nn.LeakyReLU()
)
assert (
self.src_ggnn_size >= self.DELIMITER
), "Embedding input must be larger than vocabulary"
assert (
self.src_word_vec_size < self.state_dim
), "Embedding size must be smaller than state_dim"
else:
assert (
self.DELIMITER < self.state_dim
), "Vocabulary too large, consider -src_ggnn_size"
@classmethod
def from_opt(cls, opt, embeddings):
"""Alternate constructor."""
return cls(
opt.rnn_type,
opt.src_word_vec_size,
opt.src_ggnn_size,
opt.state_dim,
opt.bidir_edges,
opt.n_edge_types,
opt.n_node,
opt.bridge_extra_node,
opt.n_steps,
opt.src_vocab,
)
def _initialization(self):
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
def forward(self, src, src_len=None):
"""See :func:`EncoderBase.forward()`"""
nodes = self.n_node
batch_size = src.size()[0]
first_extra = np.zeros(batch_size, dtype=np.int32)
token_onehot = np.zeros(
(
batch_size,
nodes,
self.src_ggnn_size if self.src_ggnn_size > 0 else self.state_dim,
),
dtype=np.int32,
)
edges = np.zeros(
(batch_size, nodes, nodes * self.n_edge_types * 2), dtype=np.int32
)
npsrc = src[:, :, 0].cpu().data.numpy().astype(np.int32)
# Initialize graph using formatted input sequence
for i in range(batch_size):
tokens_done = False
# Number of flagged nodes defines node count for this sample
# (Nodes can have no flags on them, but must be in 'flags' list).
flag_node = 0
flags_done = False
edge = 0
source_node = -1
for j in range(len(npsrc)):
token = npsrc[i][j]
if not tokens_done:
if token == self.DELIMITER:
tokens_done = True
first_extra[i] = j
else:
token_onehot[i][j][token] = 1
elif token == self.DELIMITER:
flag_node += 1
flags_done = True
assert flag_node <= nodes, "Too many nodes with flags"
elif not flags_done:
# The total number of integers in the vocab should allow
# for all features and edges to be defined.
if token == self.COMMA:
flag_node = 0
else:
num = self.idx2num[token]
if num >= 0:
token_onehot[i][flag_node][num + self.DELIMITER] = 1
flag_node += 1
elif token == self.COMMA:
edge += 1
assert (
source_node == -1
), f"Error in graph edge input: {source_node} unpaired"
assert edge < self.n_edge_types, "Too many edge types in input"
else:
num = self.idx2num[token]
if source_node < 0:
source_node = num
else:
edges[i][source_node][num + nodes * edge] = 1
if self.bidir_edges:
edges[i][num][
nodes * (edge + self.n_edge_types) + source_node
] = 1
source_node = -1
token_onehot = torch.from_numpy(token_onehot).float().to(src.device)
if self.src_ggnn_size > 0:
token_embed = self.embed(token_onehot)
prop_state = torch.cat(
(
token_embed,
torch.zeros(
(batch_size, nodes, self.state_dim - self.src_word_vec_size)
)
.float()
.to(src.device),
),
2,
)
else:
prop_state = token_onehot
edges = torch.from_numpy(edges).float().to(src.device)
for i_step in range(self.n_steps):
in_states = []
out_states = []
for i in range(self.n_edge_types):
in_states.append(self.in_fcs[i](prop_state))
out_states.append(self.out_fcs[i](prop_state))
in_states = torch.stack(in_states).transpose(0, 1).contiguous()
in_states = in_states.view(-1, nodes * self.n_edge_types, self.state_dim)
out_states = torch.stack(out_states).transpose(0, 1).contiguous()
out_states = out_states.view(-1, nodes * self.n_edge_types, self.state_dim)
prop_state = self.propogator(
in_states, out_states, prop_state, edges, nodes
)
if self.bridge_extra_node:
# Use first extra node as only source for decoder init
join_state = prop_state[first_extra, torch.arange(batch_size)]
else:
# Average all nodes to get bridge input
join_state = prop_state.mean(0)
join_state = torch.stack((join_state, join_state, join_state, join_state))
join_state = (join_state, join_state)
enc_final_hs = self._bridge(join_state)
return prop_state, enc_final_hs, src_len
def _initialize_bridge(self, rnn_type, hidden_size, num_layers):
# LSTM has hidden and cell state, other only one
number_of_states = 2 if rnn_type == "LSTM" else 1
# Total number of states
self.total_hidden_dim = hidden_size * num_layers
# Build a linear layer for each
self.bridge = nn.ModuleList(
[
nn.Linear(self.total_hidden_dim, self.total_hidden_dim, bias=True)
for _ in range(number_of_states)
]
)
def _bridge(self, hidden):
"""Forward hidden state through bridge."""
def bottle_hidden(linear, states):
"""
Transform from 3D to 2D, apply linear and return initial size
"""
size = states.size()
result = linear(states.view(-1, self.total_hidden_dim))
return F.leaky_relu(result).view(size)
if isinstance(hidden, tuple): # LSTM
outs = tuple(
[
bottle_hidden(layer, hidden[ix])
for ix, layer in enumerate(self.bridge)
]
)
else:
outs = bottle_hidden(self.bridge[0], hidden)
return outs
|