File size: 15,210 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"""Module that contain iterator used for dynamic data."""
import torch
from itertools import cycle
from onmt.constants import CorpusTask
from onmt.inputters.text_corpus import get_corpora, build_corpora_iters
from onmt.inputters.text_utils import (
text_sort_key,
process,
numericalize,
tensorify,
_addcopykeys,
)
from onmt.transforms import make_transforms
from onmt.utils.logging import init_logger, logger
from onmt.utils.misc import RandomShuffler
from torch.utils.data import DataLoader
class MixingStrategy(object):
"""Mixing strategy that should be used in Data Iterator."""
def __init__(self, iterables, weights):
"""Initilize neccessary attr."""
self._valid_iterable(iterables, weights)
self.iterables = iterables
self.weights = weights
def _valid_iterable(self, iterables, weights):
iter_keys = iterables.keys()
weight_keys = weights.keys()
if iter_keys != weight_keys:
raise ValueError(f"keys in {iterables} & {weights} should be equal.")
def __iter__(self):
raise NotImplementedError
class SequentialMixer(MixingStrategy):
"""Generate data sequentially from `iterables` which is exhaustible."""
def _iter_datasets(self):
for ds_name, ds_weight in self.weights.items():
for _ in range(ds_weight):
yield ds_name
def __iter__(self):
for ds_name in self._iter_datasets():
iterable = self.iterables[ds_name]
yield from iterable
class WeightedMixer(MixingStrategy):
"""A mixing strategy that mix data weightedly and iterate infinitely."""
def __init__(self, iterables, weights):
super().__init__(iterables, weights)
self._iterators = {}
self._counts = {}
for ds_name in self.iterables.keys():
self._reset_iter(ds_name)
def _logging(self):
"""Report corpora loading statistics."""
msgs = []
# patch to log stdout spawned processes of dataloader
logger = init_logger()
for ds_name, ds_count in self._counts.items():
msgs.append(f"\t\t\t* {ds_name}: {ds_count}")
logger.info("Weighted corpora loaded so far:\n" + "\n".join(msgs))
def _reset_iter(self, ds_name):
self._iterators[ds_name] = iter(self.iterables[ds_name])
self._counts[ds_name] = self._counts.get(ds_name, 0) + 1
self._logging()
def _iter_datasets(self):
for ds_name, ds_weight in self.weights.items():
for _ in range(ds_weight):
yield ds_name
def __iter__(self):
for ds_name in cycle(self._iter_datasets()):
iterator = self._iterators[ds_name]
try:
item = next(iterator)
except StopIteration:
self._reset_iter(ds_name)
iterator = self._iterators[ds_name]
item = next(iterator)
finally:
yield item
class DynamicDatasetIter(torch.utils.data.IterableDataset):
"""Yield batch from (multiple) plain text corpus.
Args:
corpora (dict[str, ParallelCorpus]): collections of corpora to iterate;
corpora_info (dict[str, dict]): corpora infos correspond to corpora;
transforms (dict[str, Transform]): transforms may be used by corpora;
vocabs (dict[str, Vocab]): vocab dict for convert corpora into Tensor;
task (str): CorpusTask.TRAIN/VALID/INFER;
batch_type (str): batching type to count on, choices=[tokens, sents];
batch_size (int): numbers of examples in a batch;
batch_size_multiple (int): make batch size multiply of this;
data_type (str): input data type, currently only text;
bucket_size (int): accum this number of examples in a dynamic dataset;
bucket_size_init (int): initialize the bucket with this
amount of examples;
bucket_size_increment (int): increment the bucket
size with this amount of examples;
copy (Bool): if True, will add specific items for copy_attn
skip_empty_level (str): security level when encouter empty line;
stride (int): iterate data files with this stride;
offset (int): iterate data files with this offset.
Attributes:
sort_key (function): functions define how to sort examples;
mixer (MixingStrategy): the strategy to iterate corpora.
"""
def __init__(
self,
corpora,
corpora_info,
transforms,
vocabs,
task,
batch_type,
batch_size,
batch_size_multiple,
data_type="text",
bucket_size=2048,
bucket_size_init=-1,
bucket_size_increment=0,
copy=False,
skip_empty_level="warning",
stride=1,
offset=0,
):
super(DynamicDatasetIter).__init__()
self.corpora = corpora
self.transforms = transforms
self.vocabs = vocabs
self.corpora_info = corpora_info
self.task = task
self.init_iterators = False
self.batch_size = batch_size
self.batch_type = batch_type
self.batch_size_multiple = batch_size_multiple
self.device = "cpu"
self.sort_key = text_sort_key
self.bucket_size = bucket_size
self.bucket_size_init = bucket_size_init
self.bucket_size_increment = bucket_size_increment
self.copy = copy
if stride <= 0:
raise ValueError(f"Invalid argument for stride={stride}.")
self.stride = stride
self.offset = offset
if skip_empty_level not in ["silent", "warning", "error"]:
raise ValueError(f"Invalid argument skip_empty_level={skip_empty_level}")
self.skip_empty_level = skip_empty_level
self.random_shuffler = RandomShuffler()
@classmethod
def from_opt(cls, corpora, transforms, vocabs, opt, task, copy, stride=1, offset=0):
"""Initilize `DynamicDatasetIter` with options parsed from `opt`."""
corpora_info = {}
batch_size = (
opt.valid_batch_size if (task == CorpusTask.VALID) else opt.batch_size
)
if task != CorpusTask.INFER:
if opt.batch_size_multiple is not None:
batch_size_multiple = opt.batch_size_multiple
else:
batch_size_multiple = 8 if opt.model_dtype == "fp16" else 1
corpora_info = opt.data
bucket_size = opt.bucket_size
bucket_size_init = opt.bucket_size_init
bucket_size_increment = opt.bucket_size_increment
skip_empty_level = opt.skip_empty_level
else:
batch_size_multiple = 1
corpora_info[CorpusTask.INFER] = {"transforms": opt.transforms}
corpora_info[CorpusTask.INFER]["weight"] = 1
# bucket_size = batch_size
bucket_size = 16384
bucket_size_init = -1
bucket_size_increment = 0
skip_empty_level = "warning"
return cls(
corpora,
corpora_info,
transforms,
vocabs,
task,
opt.batch_type,
batch_size,
batch_size_multiple,
data_type=opt.data_type,
bucket_size=bucket_size,
bucket_size_init=bucket_size_init,
bucket_size_increment=bucket_size_increment,
copy=copy,
skip_empty_level=skip_empty_level,
stride=stride,
offset=offset,
)
def _init_datasets(self, worker_id):
if self.num_workers > 0:
stride = self.stride * self.num_workers
offset = self.offset * self.num_workers + worker_id
else:
stride = self.stride
offset = self.offset
datasets_iterables = build_corpora_iters(
self.corpora,
self.transforms,
self.corpora_info,
skip_empty_level=self.skip_empty_level,
stride=stride,
offset=offset,
)
# import pdb
# pdb.set_trace()
datasets_weights = {
ds_name: int(self.corpora_info[ds_name]["weight"])
for ds_name in datasets_iterables.keys()
}
if self.task == CorpusTask.TRAIN:
self.mixer = WeightedMixer(datasets_iterables, datasets_weights)
else:
self.mixer = SequentialMixer(datasets_iterables, datasets_weights)
self.init_iterators = True
def _tuple_to_json_with_tokIDs(self, tuple_bucket):
bucket = []
tuple_bucket = process(self.task, tuple_bucket)
for example in tuple_bucket:
if example is not None:
if self.copy:
example = _addcopykeys(self.vocabs, example)
bucket.append(numericalize(self.vocabs, example))
return bucket
def _bucketing(self):
"""
Add up to bucket_size examples from the mixed corpora according
to the above strategy. example tuple is converted to json and
tokens numericalized.
"""
bucket = []
if self.bucket_size_init > 0:
_bucket_size = self.bucket_size_init
else:
_bucket_size = self.bucket_size
for ex in self.mixer:
bucket.append(ex)
if len(bucket) == _bucket_size:
yield self._tuple_to_json_with_tokIDs(bucket)
bucket = []
if _bucket_size < self.bucket_size:
_bucket_size += self.bucket_size_increment
else:
_bucket_size = self.bucket_size
if bucket:
yield self._tuple_to_json_with_tokIDs(bucket)
def batch_iter(self, data, batch_size, batch_type="sents", batch_size_multiple=1):
"""Yield elements from data in chunks of batch_size,
where each chunk size is a multiple of batch_size_multiple.
"""
def batch_size_fn(nbsents, maxlen):
if batch_type == "sents":
return nbsents
elif batch_type == "tokens":
return nbsents * maxlen
else:
raise ValueError(f"Invalid argument batch_type={batch_type}")
def max_src_tgt(ex):
"""return the max tokens btw src and tgt in the sequence."""
if ex["tgt"]:
return max(len(ex["src"]["src_ids"]), len(ex["tgt"]["tgt_ids"]))
return len(ex["src"]["src_ids"])
minibatch, maxlen, size_so_far, seen = [], 0, 0, set()
for ex in data:
src = ex["src"]["src"]
if src not in seen or (self.task != CorpusTask.TRAIN):
seen.add(src)
minibatch.append(ex)
nbsents = len(minibatch)
maxlen = max(max_src_tgt(ex), maxlen)
size_so_far = batch_size_fn(nbsents, maxlen)
if size_so_far >= batch_size:
overflowed = 1 if size_so_far > batch_size else 0
if batch_size_multiple > 1:
overflowed += (nbsents - overflowed) % batch_size_multiple
if overflowed == 0:
yield minibatch
minibatch, maxlen, size_so_far, seen = [], 0, 0, set()
else:
if overflowed == nbsents:
logger.warning(
"The batch will be filled until we reach"
" %d, its size may exceed %d tokens"
% (batch_size_multiple, batch_size)
)
else:
yield minibatch[:-overflowed]
minibatch = minibatch[-overflowed:]
maxlen = max([max_src_tgt(ex) for ex in minibatch])
size_so_far = batch_size_fn(len(minibatch), maxlen)
seen = set()
if minibatch:
yield minibatch
def __iter__(self):
for bucket in self._bucketing():
# For TRAIN we need to group examples by length
# for faster performance, but otherwise, sequential.
if self.task == CorpusTask.TRAIN:
bucket = sorted(bucket, key=self.sort_key)
p_batch = list(
self.batch_iter(
bucket,
self.batch_size,
batch_type=self.batch_type,
batch_size_multiple=self.batch_size_multiple,
)
)
# For TRAIN we shuffle batches within the bucket
# otherwise sequential
if self.task == CorpusTask.TRAIN:
p_batch = self.random_shuffler(p_batch)
for minibatch in p_batch:
# for specific case of rnn_packed need to be sorted
# within the batch
minibatch.sort(key=self.sort_key, reverse=True)
tensor_batch = tensorify(self.vocabs, minibatch)
yield tensor_batch
def build_dynamic_dataset_iter(
opt,
transforms_cls,
vocabs,
copy=False,
task=CorpusTask.TRAIN,
stride=1,
offset=0,
src=None,
tgt=None,
align=None,
):
"""
Build `DynamicDatasetIter` from opt.
if src, tgt,align are passed then dataset is built from those lists
instead of opt.[src, tgt, align]
Typically this function is called for CorpusTask.[TRAIN,VALID,INFER]
from the main tain / translate scripts
We disable automatic batching in the DataLoader.
The custom optimized batching is performed by the
custom class DynamicDatasetIter inherited from IterableDataset
(and not by a custom collate function).
We load opt.bucket_size examples, sort them and yield
mini-batchs of size opt.batch_size.
The bucket_size must be large enough to ensure homogeneous batches.
Each worker will load opt.prefetch_factor mini-batches in
advance to avoid the GPU waiting during the refilling of the bucket.
"""
transforms = make_transforms(opt, transforms_cls, vocabs)
corpora = get_corpora(opt, task, src=src, tgt=tgt, align=align)
if corpora is None:
assert task != CorpusTask.TRAIN, "only valid corpus is ignorable."
return None
data_iter = DynamicDatasetIter.from_opt(
corpora, transforms, vocabs, opt, task, copy=copy, stride=stride, offset=offset
)
data_iter.num_workers = opt.num_workers if hasattr(opt, "num_workers") else 0
if data_iter.num_workers == 0 or task == CorpusTask.INFER:
data_iter._init_datasets(0) # when workers=0 init_fn not called
data_loader = data_iter
else:
data_loader = DataLoader(
data_iter,
batch_size=None,
pin_memory=True,
multiprocessing_context="spawn",
num_workers=data_iter.num_workers,
worker_init_fn=data_iter._init_datasets,
prefetch_factor=opt.prefetch_factor,
)
return data_loader
|