File size: 11,710 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import torch
import pyonmttok
from onmt.constants import DefaultTokens, CorpusTask, ModelTask
from torch.nn.utils.rnn import pad_sequence
from onmt.utils.logging import logger
from collections import Counter


def parse_features(line, n_feats=0, defaults=None):
    """
    Parses text lines with features appended to each token.
    Ex.: This│A│B is│A│A a│C│A test│A│B
    """
    text, feats = [], [[] for _ in range(n_feats)]
    check, count = 0, 0
    for token in line.split(" "):
        tok, *fts = token.strip().split("│")
        check += len(fts)
        count += 1
        if not fts and defaults is not None:
            if isinstance(defaults, str):
                defaults = defaults.split("│")
            if n_feats > 0:
                assert len(defaults) == n_feats  # Security check
                fts = defaults
        assert len(fts) == n_feats, (
            f"The number of fetures does not match the "
            f"expected number of features. Found {len(fts)} "
            f"features in the data but {n_feats} were expected."
        )
        text.append(tok)
        for i in range(n_feats):
            feats[i].append(fts[i])
    # Check if all tokens have features or none at all
    assert (
        check == 0 or check == count * n_feats
    ), "Some tokens are missing features. Please check your data."
    feats = [" ".join(x) for x in feats] if n_feats > 0 else None
    return " ".join(text), feats


def append_features_to_text(text, features):
    """
    It appends features to subwords when dumping to file
    """
    text_tok = text.split(" ")
    feats_tok = [x.split(" ") for x in features]

    pretty_toks = []
    for tok, *feats in zip(text_tok, *feats_tok):
        feats = "│".join(feats)
        if feats:
            pretty_toks.append(f"{tok}{feats}")
        else:
            pretty_toks.append(tok)
    return " ".join(pretty_toks)


def text_sort_key(ex):
    """Sort using the number of tokens in the sequence."""
    if ex["tgt"]:
        return len(ex["src"]["src_ids"]), len(ex["tgt"]["tgt_ids"])
    return len(ex["src"]["src_ids"])


def clean_example(maybe_example):
    maybe_example["src"] = {"src": " ".join(maybe_example["src"])}
    # Make features part of src like
    # {'src': {'src': ..., 'feats': [...., ....]}}
    if "src_feats" in maybe_example:
        maybe_example["src"]["feats"] = [
            " ".join(x) for x in maybe_example["src_feats"]
        ]
        del maybe_example["src_feats"]
    if maybe_example["tgt"] is not None:
        maybe_example["tgt"] = {"tgt": " ".join(maybe_example["tgt"])}
    if "align" in maybe_example:
        maybe_example["align"] = " ".join(maybe_example["align"])
    return maybe_example


def process(task, bucket, **kwargs):
    """Returns valid transformed bucket from bucket."""
    transform_cid_to_examples = {}
    for example in bucket:
        transform_cid = (example[1], example[2])
        if transform_cid not in transform_cid_to_examples:
            transform_cid_to_examples[transform_cid] = []
        transform_cid_to_examples[transform_cid].append(example)

    processed_bucket = []
    for (transform, cid), sub_bucket in transform_cid_to_examples.items():
        transf_bucket = transform.batch_apply(
            sub_bucket, is_train=(task == CorpusTask.TRAIN), corpus_name=cid
        )
        for example, transform, cid in transf_bucket:
            example = clean_example(example)
            if len(example["src"]["src"]) > 0:
                processed_bucket.append(example)

        # at this point an example looks like:
        # {'src': {'src': ..., 'feats': [....]},
        #  'tgt': {'tgt': ...},
        #  'src_original': ['tok1', ...'tokn'],
        #  'tgt_original': ['tok1', ...'tokm'],
        #  'indices' : seq in bucket
        #  'align': ...,
        # }
    if len(processed_bucket) > 0:
        return processed_bucket
    else:
        return None


def numericalize(vocabs, example):
    """ """
    decoder_start_token = vocabs["decoder_start_token"]
    numeric = example
    numeric["src"]["src_ids"] = []
    if vocabs["data_task"] == ModelTask.SEQ2SEQ:
        src_text = example["src"]["src"].split()
        numeric["src"]["src_ids"] = vocabs["src"](src_text)
        if example["tgt"] is not None:
            numeric["tgt"]["tgt_ids"] = []
            tgt_text = example["tgt"]["tgt"].split()
            numeric["tgt"]["tgt_ids"] = vocabs["tgt"](
                [decoder_start_token] + tgt_text + [DefaultTokens.EOS]
            )

    elif vocabs["data_task"] == ModelTask.LANGUAGE_MODEL:
        src_text = example["src"]["src"].split()
        if decoder_start_token != "":
            src_text = [decoder_start_token] + src_text
        numeric["src"]["src_ids"] = vocabs["src"](src_text)
        if example["tgt"] is not None:
            numeric["tgt"]["tgt_ids"] = []
            tgt_text = example["tgt"]["tgt"].split()
            numeric["tgt"]["tgt_ids"] = vocabs["tgt"](tgt_text + [DefaultTokens.EOS])
    else:
        raise ValueError(f"Something went wrong with task {vocabs['data_task']}")

    if "feats" in example["src"]:
        numeric_feats = []
        for fv, feat in zip(vocabs["src_feats"], example["src"]["feats"]):
            numeric_feats.append(fv(feat.split()))
        numeric["src"]["feats"] = numeric_feats

    return numeric


def parse_align_idx(align_pharaoh):
    """
    Parse Pharaoh alignment into [[<src>, <tgt>], ...]
    """
    align_list = align_pharaoh.strip().split(" ")
    flatten_align_idx = []
    for align in align_list:
        try:
            src_idx, tgt_idx = align.split("-")
        except ValueError:
            logger.warning("{} in `{}`".format(align, align_pharaoh))
            logger.warning("Bad alignement line exists. Please check file!")
            raise
        flatten_align_idx.append([int(src_idx), int(tgt_idx)])
    return flatten_align_idx


def tensorify(vocabs, minibatch):
    """
    This function transforms a batch of example in tensors
    Each example looks like
    {'src': {'src': ..., 'feats': [...], 'src_ids': ...},
     'tgt': {'tgt': ..., 'tgt_ids': ...},
     'src_original': ['tok1', ...'tokn'],
     'tgt_original': ['tok1', ...'tokm'],
     'indices' : seq in bucket
     'align': ...,
    }
    Returns  Dict of batch Tensors
        {'src': [seqlen, batchsize, n_feats+1],
         'tgt' : [seqlen, batchsize, n_feats=1],
         'indices' : [batchsize],
         'srclen': [batchsize],
         'tgtlen': [batchsize],
         'align': alignment sparse tensor
        }
    """
    tensor_batch = {}
    tbatchsrc = [torch.LongTensor(ex["src"]["src_ids"]) for ex in minibatch]
    padidx = vocabs["src"][DefaultTokens.PAD]
    tbatchsrc = pad_sequence(tbatchsrc, batch_first=True, padding_value=padidx)
    if "feats" in minibatch[0]["src"]:
        tbatchfs = [tbatchsrc]
        for feat_id in range(len(minibatch[0]["src"]["feats"])):
            tbatchfeat = [
                torch.LongTensor(ex["src"]["feats"][feat_id]) for ex in minibatch
            ]
            padidx = vocabs["src_feats"][feat_id][DefaultTokens.PAD]
            tbatchfeat = pad_sequence(
                tbatchfeat, batch_first=True, padding_value=padidx
            )
            tbatchfs.append(tbatchfeat)
        tbatchsrc = torch.stack(tbatchfs, dim=2)
    else:
        # Need to add features in last dimensions
        tbatchsrc = tbatchsrc[:, :, None]

    tensor_batch["src"] = tbatchsrc
    tensor_batch["indices"] = torch.LongTensor([ex["indices"] for ex in minibatch])
    tensor_batch["srclen"] = torch.LongTensor(
        [len(ex["src"]["src_ids"]) for ex in minibatch]
    )

    if minibatch[0]["tgt"] is not None:
        tbatchtgt = [torch.LongTensor(ex["tgt"]["tgt_ids"]) for ex in minibatch]
        padidx = vocabs["tgt"][DefaultTokens.PAD]
        tbatchtgt = pad_sequence(tbatchtgt, batch_first=True, padding_value=padidx)
        tbatchtgt = tbatchtgt[:, :, None]
        tbatchtgtlen = torch.LongTensor([len(ex["tgt"]["tgt_ids"]) for ex in minibatch])
        tensor_batch["tgt"] = tbatchtgt
        tensor_batch["tgtlen"] = tbatchtgtlen

    if "align" in minibatch[0].keys() and minibatch[0]["align"] is not None:
        sparse_idx = []
        for i, ex in enumerate(minibatch):
            for src, tgt in parse_align_idx(ex["align"]):
                sparse_idx.append([i, tgt + 1, src])
        tbatchalign = torch.LongTensor(sparse_idx)
        tensor_batch["align"] = tbatchalign

    if "src_map" in minibatch[0].keys():
        src_vocab_size = max([max(ex["src_map"]) for ex in minibatch]) + 1
        src_map = torch.zeros(
            len(tensor_batch["srclen"]), tbatchsrc.size(1), src_vocab_size
        )
        for i, ex in enumerate(minibatch):
            for j, t in enumerate(ex["src_map"]):
                src_map[i, j, t] = 1
        tensor_batch["src_map"] = src_map

    if "alignment" in minibatch[0].keys():
        alignment = torch.zeros(len(tensor_batch["srclen"]), tbatchtgt.size(1)).long()
        for i, ex in enumerate(minibatch):
            alignment[i, : len(ex["alignment"])] = torch.LongTensor(ex["alignment"])
        tensor_batch["alignment"] = alignment

    if "src_ex_vocab" in minibatch[0].keys():
        tensor_batch["src_ex_vocab"] = [ex["src_ex_vocab"] for ex in minibatch]

    return tensor_batch


def textbatch_to_tensor(vocabs, batch, is_train=False):
    """
    This is a hack to transform a simple batch of texts
    into a tensored batch to pass through _translate()
    """
    numeric = []
    infer_iter = []
    for i, ex in enumerate(batch):
        # Keep it consistent with dynamic data
        ex["srclen"] = len(ex["src"]["src"].split())
        ex["indices"] = i
        ex["align"] = None
        numeric.append(numericalize(vocabs, ex))
    numeric.sort(key=text_sort_key, reverse=True)
    infer_iter = [tensorify(vocabs, numeric)]
    return infer_iter


def _addcopykeys(vocabs, example):
    """Create copy-vocab and numericalize with it.
    In-place adds ``"src_map"`` to ``example``. That is the copy-vocab
    numericalization of the tokenized ``example["src"]``. If ``example``
    has a ``"tgt"`` key, adds ``"alignment"`` to example. That is the
    copy-vocab numericalization of the tokenized ``example["tgt"]``. The
    alignment has an initial and final UNK token to match the BOS and EOS
    tokens.
    Args:
        vocabs
        example (dict): An example dictionary with a ``"src"`` key and
            maybe a ``"tgt"`` key. (This argument changes in place!)
    Returns:
        ``example``, changed as described.
    """
    src = example["src"]["src"].split()
    src_ex_vocab = pyonmttok.build_vocab_from_tokens(
        Counter(src),
        maximum_size=0,
        minimum_frequency=1,
        special_tokens=[
            DefaultTokens.UNK,
            DefaultTokens.PAD,
            DefaultTokens.BOS,
            DefaultTokens.EOS,
        ],
    )
    src_ex_vocab.default_id = src_ex_vocab[DefaultTokens.UNK]
    # make a small vocab containing just the tokens in the source sequence

    # Map source tokens to indices in the dynamic dict.
    example["src_map"] = src_ex_vocab(src)
    example["src_ex_vocab"] = src_ex_vocab

    if example["tgt"] is not None:
        if vocabs["data_task"] == ModelTask.SEQ2SEQ:
            tgt = (
                [DefaultTokens.UNK]
                + example["tgt"]["tgt"].split()
                + [DefaultTokens.UNK]
            )
        elif vocabs["data_task"] == ModelTask.LANGUAGE_MODEL:
            tgt = example["tgt"]["tgt"].split() + [DefaultTokens.UNK]
        example["alignment"] = src_ex_vocab(tgt)
    return example