File size: 9,472 Bytes
c668e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
#!/usr/bin/env python
"""Training on a single process."""
import torch
import sys
from onmt.utils.logging import init_logger, logger
from onmt.utils.parse import ArgumentParser
from onmt.constants import CorpusTask
from onmt.transforms import (
make_transforms,
save_transforms,
get_specials,
get_transforms_cls,
)
from onmt.inputters import build_vocab, IterOnDevice
from onmt.inputters.inputter import dict_to_vocabs, vocabs_to_dict
from onmt.inputters.dynamic_iterator import build_dynamic_dataset_iter
from onmt.inputters.text_corpus import save_transformed_sample
from onmt.model_builder import build_model
from onmt.models.model_saver import load_checkpoint
from onmt.utils.optimizers import Optimizer
from onmt.utils.misc import set_random_seed
from onmt.trainer import build_trainer
from onmt.models import build_model_saver
from onmt.modules.embeddings import prepare_pretrained_embeddings
def prepare_transforms_vocabs(opt, transforms_cls):
"""Prepare or dump transforms before training."""
# if transform + options set in 'valid' we need to copy in main
# transform / options for scoring considered as inference
validset_transforms = opt.data.get("valid", {}).get("transforms", None)
if validset_transforms:
opt.transforms = validset_transforms
if opt.data.get("valid", {}).get("tgt_prefix", None):
opt.tgt_prefix = opt.data.get("valid", {}).get("tgt_prefix", None)
if opt.data.get("valid", {}).get("src_prefix", None):
opt.src_prefix = opt.data.get("valid", {}).get("src_prefix", None)
if opt.data.get("valid", {}).get("tgt_suffix", None):
opt.tgt_suffix = opt.data.get("valid", {}).get("tgt_suffix", None)
if opt.data.get("valid", {}).get("src_suffix", None):
opt.src_suffix = opt.data.get("valid", {}).get("src_suffix", None)
specials = get_specials(opt, transforms_cls)
vocabs = build_vocab(opt, specials)
# maybe prepare pretrained embeddings, if any
prepare_pretrained_embeddings(opt, vocabs)
if opt.dump_transforms or opt.n_sample != 0:
transforms = make_transforms(opt, transforms_cls, vocabs)
if opt.dump_transforms:
save_transforms(transforms, opt.save_data, overwrite=opt.overwrite)
if opt.n_sample != 0:
logger.warning(
"`-n_sample` != 0: Training will not be started. "
f"Stop after saving {opt.n_sample} samples/corpus."
)
save_transformed_sample(opt, transforms, n_sample=opt.n_sample)
logger.info("Sample saved, please check it before restart training.")
sys.exit()
logger.info(
"The first 10 tokens of the vocabs are:"
f"{vocabs_to_dict(vocabs)['src'][0:10]}"
)
logger.info(f"The decoder start token is: {opt.decoder_start_token}")
return vocabs
def _init_train(opt):
"""Common initilization stuff for all training process.
We need to build or rebuild the vocab in 3 cases:
- training from scratch (train_from is false)
- resume training but transforms have changed
- resume training but vocab file has been modified
"""
ArgumentParser.validate_prepare_opts(opt)
transforms_cls = get_transforms_cls(opt._all_transform)
if opt.train_from:
# Load checkpoint if we resume from a previous training.
checkpoint = load_checkpoint(ckpt_path=opt.train_from)
vocabs = dict_to_vocabs(checkpoint["vocab"])
if (
hasattr(checkpoint["opt"], "_all_transform")
and len(
opt._all_transform.symmetric_difference(
checkpoint["opt"]._all_transform
)
)
!= 0
):
_msg = "configured transforms is different from checkpoint:"
new_transf = opt._all_transform.difference(checkpoint["opt"]._all_transform)
old_transf = checkpoint["opt"]._all_transform.difference(opt._all_transform)
if len(new_transf) != 0:
_msg += f" +{new_transf}"
if len(old_transf) != 0:
_msg += f" -{old_transf}."
logger.warning(_msg)
vocabs = prepare_transforms_vocabs(opt, transforms_cls)
if opt.update_vocab:
logger.info("Updating checkpoint vocabulary with new vocabulary")
vocabs = prepare_transforms_vocabs(opt, transforms_cls)
else:
checkpoint = None
vocabs = prepare_transforms_vocabs(opt, transforms_cls)
return checkpoint, vocabs, transforms_cls
def configure_process(opt, device_id):
if device_id >= 0:
torch.cuda.set_device(device_id)
set_random_seed(opt.seed, device_id >= 0)
def _get_model_opts(opt, checkpoint=None):
"""Get `model_opt` to build model, may load from `checkpoint` if any."""
if checkpoint is not None:
model_opt = ArgumentParser.ckpt_model_opts(checkpoint["opt"])
if opt.override_opts:
logger.info("Over-ride model option set to true - use with care")
args = list(opt.__dict__.keys())
model_args = list(model_opt.__dict__.keys())
for arg in args:
if arg in model_args and getattr(opt, arg) != getattr(model_opt, arg):
logger.info(
"Option: %s , value: %s overriding model: %s"
% (arg, getattr(opt, arg), getattr(model_opt, arg))
)
model_opt = opt
else:
model_opt = ArgumentParser.ckpt_model_opts(checkpoint["opt"])
ArgumentParser.update_model_opts(model_opt)
ArgumentParser.validate_model_opts(model_opt)
if opt.tensorboard_log_dir == model_opt.tensorboard_log_dir and hasattr(
model_opt, "tensorboard_log_dir_dated"
):
# ensure tensorboard output is written in the directory
# of previous checkpoints
opt.tensorboard_log_dir_dated = (
model_opt.tensorboard_log_dir_dated
) # noqa: E501
# Override checkpoint's update_embeddings as it defaults to false
model_opt.update_vocab = opt.update_vocab
# Override checkpoint's freezing settings as it defaults to false
model_opt.freeze_encoder = opt.freeze_encoder
model_opt.freeze_decoder = opt.freeze_decoder
else:
model_opt = opt
return model_opt
def main(opt, device_id):
"""Start training on `device_id`."""
# NOTE: It's important that ``opt`` has been validated and updated
# at this point.
configure_process(opt, device_id)
init_logger(opt.log_file)
checkpoint, vocabs, transforms_cls = _init_train(opt)
model_opt = _get_model_opts(opt, checkpoint=checkpoint)
# Build model.
model = build_model(model_opt, opt, vocabs, checkpoint, device_id)
model.count_parameters(log=logger.info)
trainable = {
"torch.float32": 0,
"torch.float16": 0,
"torch.uint8": 0,
"torch.int8": 0,
}
non_trainable = {
"torch.float32": 0,
"torch.float16": 0,
"torch.uint8": 0,
"torch.int8": 0,
}
for n, p in model.named_parameters():
if p.requires_grad:
trainable[str(p.dtype)] += p.numel()
else:
non_trainable[str(p.dtype)] += p.numel()
logger.info("Trainable parameters = %s" % str(trainable))
logger.info("Non trainable parameters = %s" % str(non_trainable))
logger.info(" * src vocab size = %d" % len(vocabs["src"]))
logger.info(" * tgt vocab size = %d" % len(vocabs["tgt"]))
if "src_feats" in vocabs:
for i, feat_vocab in enumerate(vocabs["src_feats"]):
logger.info(f"* src_feat {i} vocab size = {len(feat_vocab)}")
# Build optimizer.
optim = Optimizer.from_opt(model, opt, checkpoint=checkpoint)
del checkpoint
# Build model saver
model_saver = build_model_saver(model_opt, opt, model, vocabs, optim, device_id)
trainer = build_trainer(
opt, device_id, model, vocabs, optim, model_saver=model_saver
)
offset = max(0, device_id) if opt.parallel_mode == "data_parallel" else 0
stride = max(1, len(opt.gpu_ranks)) if opt.parallel_mode == "data_parallel" else 1
_train_iter = build_dynamic_dataset_iter(
opt,
transforms_cls,
vocabs,
task=CorpusTask.TRAIN,
copy=opt.copy_attn,
stride=stride,
offset=offset,
)
train_iter = IterOnDevice(_train_iter, device_id)
valid_iter = build_dynamic_dataset_iter(
opt, transforms_cls, vocabs, task=CorpusTask.VALID, copy=opt.copy_attn
)
if valid_iter is not None:
valid_iter = IterOnDevice(valid_iter, device_id)
if len(opt.gpu_ranks):
logger.info("Starting training on GPU: %s" % opt.gpu_ranks)
else:
logger.info("Starting training on CPU, could be very slow")
train_steps = opt.train_steps
if opt.single_pass and train_steps > 0:
logger.warning("Option single_pass is enabled, ignoring train_steps.")
train_steps = 0
trainer.train(
train_iter,
train_steps,
save_checkpoint_steps=opt.save_checkpoint_steps,
valid_iter=valid_iter,
valid_steps=opt.valid_steps,
)
if trainer.report_manager.tensorboard_writer is not None:
trainer.report_manager.tensorboard_writer.close()
|