File size: 9,472 Bytes
c668e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python
"""Training on a single process."""
import torch
import sys

from onmt.utils.logging import init_logger, logger
from onmt.utils.parse import ArgumentParser
from onmt.constants import CorpusTask
from onmt.transforms import (
    make_transforms,
    save_transforms,
    get_specials,
    get_transforms_cls,
)
from onmt.inputters import build_vocab, IterOnDevice
from onmt.inputters.inputter import dict_to_vocabs, vocabs_to_dict
from onmt.inputters.dynamic_iterator import build_dynamic_dataset_iter
from onmt.inputters.text_corpus import save_transformed_sample
from onmt.model_builder import build_model
from onmt.models.model_saver import load_checkpoint
from onmt.utils.optimizers import Optimizer
from onmt.utils.misc import set_random_seed
from onmt.trainer import build_trainer
from onmt.models import build_model_saver
from onmt.modules.embeddings import prepare_pretrained_embeddings


def prepare_transforms_vocabs(opt, transforms_cls):
    """Prepare or dump transforms before training."""
    # if transform + options set in 'valid' we need to copy in main
    # transform / options for scoring considered as inference
    validset_transforms = opt.data.get("valid", {}).get("transforms", None)
    if validset_transforms:
        opt.transforms = validset_transforms
        if opt.data.get("valid", {}).get("tgt_prefix", None):
            opt.tgt_prefix = opt.data.get("valid", {}).get("tgt_prefix", None)
        if opt.data.get("valid", {}).get("src_prefix", None):
            opt.src_prefix = opt.data.get("valid", {}).get("src_prefix", None)
        if opt.data.get("valid", {}).get("tgt_suffix", None):
            opt.tgt_suffix = opt.data.get("valid", {}).get("tgt_suffix", None)
        if opt.data.get("valid", {}).get("src_suffix", None):
            opt.src_suffix = opt.data.get("valid", {}).get("src_suffix", None)
    specials = get_specials(opt, transforms_cls)

    vocabs = build_vocab(opt, specials)

    # maybe prepare pretrained embeddings, if any
    prepare_pretrained_embeddings(opt, vocabs)

    if opt.dump_transforms or opt.n_sample != 0:
        transforms = make_transforms(opt, transforms_cls, vocabs)
    if opt.dump_transforms:
        save_transforms(transforms, opt.save_data, overwrite=opt.overwrite)
    if opt.n_sample != 0:
        logger.warning(
            "`-n_sample` != 0: Training will not be started. "
            f"Stop after saving {opt.n_sample} samples/corpus."
        )
        save_transformed_sample(opt, transforms, n_sample=opt.n_sample)
        logger.info("Sample saved, please check it before restart training.")
        sys.exit()
    logger.info(
        "The first 10 tokens of the vocabs are:"
        f"{vocabs_to_dict(vocabs)['src'][0:10]}"
    )
    logger.info(f"The decoder start token is: {opt.decoder_start_token}")
    return vocabs


def _init_train(opt):
    """Common initilization stuff for all training process.
    We need to build or rebuild the vocab in 3 cases:
    - training from scratch (train_from is false)
    - resume training but transforms have changed
    - resume training but vocab file has been modified
    """
    ArgumentParser.validate_prepare_opts(opt)
    transforms_cls = get_transforms_cls(opt._all_transform)
    if opt.train_from:
        # Load checkpoint if we resume from a previous training.
        checkpoint = load_checkpoint(ckpt_path=opt.train_from)
        vocabs = dict_to_vocabs(checkpoint["vocab"])
        if (
            hasattr(checkpoint["opt"], "_all_transform")
            and len(
                opt._all_transform.symmetric_difference(
                    checkpoint["opt"]._all_transform
                )
            )
            != 0
        ):
            _msg = "configured transforms is different from checkpoint:"
            new_transf = opt._all_transform.difference(checkpoint["opt"]._all_transform)
            old_transf = checkpoint["opt"]._all_transform.difference(opt._all_transform)
            if len(new_transf) != 0:
                _msg += f" +{new_transf}"
            if len(old_transf) != 0:
                _msg += f" -{old_transf}."
            logger.warning(_msg)
            vocabs = prepare_transforms_vocabs(opt, transforms_cls)
        if opt.update_vocab:
            logger.info("Updating checkpoint vocabulary with new vocabulary")
            vocabs = prepare_transforms_vocabs(opt, transforms_cls)
    else:
        checkpoint = None
        vocabs = prepare_transforms_vocabs(opt, transforms_cls)

    return checkpoint, vocabs, transforms_cls


def configure_process(opt, device_id):
    if device_id >= 0:
        torch.cuda.set_device(device_id)
    set_random_seed(opt.seed, device_id >= 0)


def _get_model_opts(opt, checkpoint=None):
    """Get `model_opt` to build model, may load from `checkpoint` if any."""
    if checkpoint is not None:
        model_opt = ArgumentParser.ckpt_model_opts(checkpoint["opt"])
        if opt.override_opts:
            logger.info("Over-ride model option set to true - use with care")
            args = list(opt.__dict__.keys())
            model_args = list(model_opt.__dict__.keys())
            for arg in args:
                if arg in model_args and getattr(opt, arg) != getattr(model_opt, arg):
                    logger.info(
                        "Option: %s , value: %s overriding model: %s"
                        % (arg, getattr(opt, arg), getattr(model_opt, arg))
                    )
            model_opt = opt
        else:
            model_opt = ArgumentParser.ckpt_model_opts(checkpoint["opt"])
            ArgumentParser.update_model_opts(model_opt)
            ArgumentParser.validate_model_opts(model_opt)
            if opt.tensorboard_log_dir == model_opt.tensorboard_log_dir and hasattr(
                model_opt, "tensorboard_log_dir_dated"
            ):
                # ensure tensorboard output is written in the directory
                # of previous checkpoints
                opt.tensorboard_log_dir_dated = (
                    model_opt.tensorboard_log_dir_dated
                )  # noqa: E501
            # Override checkpoint's update_embeddings as it defaults to false
            model_opt.update_vocab = opt.update_vocab
            # Override checkpoint's freezing settings as it defaults to false
            model_opt.freeze_encoder = opt.freeze_encoder
            model_opt.freeze_decoder = opt.freeze_decoder
    else:
        model_opt = opt
    return model_opt


def main(opt, device_id):
    """Start training on `device_id`."""
    # NOTE: It's important that ``opt`` has been validated and updated
    # at this point.

    configure_process(opt, device_id)
    init_logger(opt.log_file)
    checkpoint, vocabs, transforms_cls = _init_train(opt)
    model_opt = _get_model_opts(opt, checkpoint=checkpoint)

    # Build model.
    model = build_model(model_opt, opt, vocabs, checkpoint, device_id)

    model.count_parameters(log=logger.info)
    trainable = {
        "torch.float32": 0,
        "torch.float16": 0,
        "torch.uint8": 0,
        "torch.int8": 0,
    }
    non_trainable = {
        "torch.float32": 0,
        "torch.float16": 0,
        "torch.uint8": 0,
        "torch.int8": 0,
    }
    for n, p in model.named_parameters():
        if p.requires_grad:
            trainable[str(p.dtype)] += p.numel()
        else:
            non_trainable[str(p.dtype)] += p.numel()
    logger.info("Trainable parameters = %s" % str(trainable))
    logger.info("Non trainable parameters = %s" % str(non_trainable))
    logger.info(" * src vocab size = %d" % len(vocabs["src"]))
    logger.info(" * tgt vocab size = %d" % len(vocabs["tgt"]))
    if "src_feats" in vocabs:
        for i, feat_vocab in enumerate(vocabs["src_feats"]):
            logger.info(f"* src_feat {i} vocab size = {len(feat_vocab)}")

    # Build optimizer.
    optim = Optimizer.from_opt(model, opt, checkpoint=checkpoint)

    del checkpoint

    # Build model saver
    model_saver = build_model_saver(model_opt, opt, model, vocabs, optim, device_id)

    trainer = build_trainer(
        opt, device_id, model, vocabs, optim, model_saver=model_saver
    )

    offset = max(0, device_id) if opt.parallel_mode == "data_parallel" else 0
    stride = max(1, len(opt.gpu_ranks)) if opt.parallel_mode == "data_parallel" else 1

    _train_iter = build_dynamic_dataset_iter(
        opt,
        transforms_cls,
        vocabs,
        task=CorpusTask.TRAIN,
        copy=opt.copy_attn,
        stride=stride,
        offset=offset,
    )
    train_iter = IterOnDevice(_train_iter, device_id)

    valid_iter = build_dynamic_dataset_iter(
        opt, transforms_cls, vocabs, task=CorpusTask.VALID, copy=opt.copy_attn
    )

    if valid_iter is not None:
        valid_iter = IterOnDevice(valid_iter, device_id)

    if len(opt.gpu_ranks):
        logger.info("Starting training on GPU: %s" % opt.gpu_ranks)
    else:
        logger.info("Starting training on CPU, could be very slow")
    train_steps = opt.train_steps
    if opt.single_pass and train_steps > 0:
        logger.warning("Option single_pass is enabled, ignoring train_steps.")
        train_steps = 0

    trainer.train(
        train_iter,
        train_steps,
        save_checkpoint_steps=opt.save_checkpoint_steps,
        valid_iter=valid_iter,
        valid_steps=opt.valid_steps,
    )

    if trainer.report_manager.tensorboard_writer is not None:
        trainer.report_manager.tensorboard_writer.close()