ReactSeq / onmt /encoders /transformer.py
Oopstom's picture
Upload 313 files
c668e80 verified
raw
history blame
8.27 kB
"""
Implementation of "Attention is All You Need"
"""
import torch.nn as nn
from onmt.encoders.encoder import EncoderBase
from onmt.modules import MultiHeadedAttention
from onmt.modules.position_ffn import PositionwiseFeedForward
from onmt.modules.position_ffn import ActivationFunction
from onmt.utils.misc import sequence_mask
from onmt.modules.rmsnorm import RMSNorm
class TransformerEncoderLayer(nn.Module):
"""
A single layer of the transformer encoder.
Args:
d_model (int): the dimension of keys/values/queries in
MultiHeadedAttention, also the input size of
the first-layer of the PositionwiseFeedForward.
heads (int): the number of head for MultiHeadedAttention.
d_ff (int): the second-layer of the PositionwiseFeedForward.
dropout (float): dropout probability(0-1.0).
pos_ffn_activation_fn (ActivationFunction):
activation function choice for PositionwiseFeedForward layer
"""
def __init__(
self,
d_model,
heads,
d_ff,
dropout,
attention_dropout,
max_relative_positions=0,
relative_positions_buckets=0,
pos_ffn_activation_fn=ActivationFunction.relu,
add_qkvbias=False,
num_kv=0,
add_ffnbias=True,
parallel_residual=False,
layer_norm="standard",
norm_eps=1e-6,
use_ckpting=[],
parallel_gpu=1,
):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiHeadedAttention(
heads,
d_model,
dropout=attention_dropout,
is_decoder=False,
max_relative_positions=max_relative_positions,
relative_positions_buckets=relative_positions_buckets,
attn_type="self",
add_qkvbias=add_qkvbias,
num_kv=num_kv,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
self.feed_forward = PositionwiseFeedForward(
d_model,
d_ff,
dropout,
pos_ffn_activation_fn,
add_ffnbias,
parallel_residual,
layer_norm,
norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
self.parallel_residual = parallel_residual
if layer_norm == "standard":
self.layer_norm = nn.LayerNorm(d_model, eps=norm_eps)
elif layer_norm == "rms":
self.layer_norm = RMSNorm(d_model, eps=norm_eps)
else:
raise ValueError(f"{layer_norm} layer norm type is not supported")
self.dropout = nn.Dropout(dropout)
def forward(self, layer_in, mask):
"""
Args:
layer_in (FloatTensor): ``(batch_size, src_len, model_dim)``
mask (LongTensor): ``(batch_size, 1, src_len)``
Returns:
(FloatTensor):
* layer_out ``(batch_size, src_len, model_dim)``
"""
norm_layer_in = self.layer_norm(layer_in)
context, _ = self.self_attn(
norm_layer_in, norm_layer_in, norm_layer_in, mask=mask
)
if self.parallel_residual:
# feed_forward applies residual, so we remove and apply residual with un-normed
layer_out = (
self.feed_forward(norm_layer_in)
- norm_layer_in
+ layer_in
+ self.dropout(context)
)
else:
layer_out = self.dropout(context) + layer_in
layer_out = self.feed_forward(layer_out)
return layer_out
def update_dropout(self, dropout, attention_dropout):
self.self_attn.update_dropout(attention_dropout)
self.feed_forward.update_dropout(dropout)
self.dropout.p = dropout
class TransformerEncoder(EncoderBase):
"""The Transformer encoder from "Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`
Args:
num_layers (int): number of encoder layers
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
dropout (float): dropout parameters
embeddings (onmt.modules.Embeddings):
embeddings to use, should have positional encodings
pos_ffn_activation_fn (ActivationFunction):
activation function choice for PositionwiseFeedForward layer
Returns:
(torch.FloatTensor, torch.FloatTensor):
* enc_out ``(batch_size, src_len, model_dim)``
* encoder final state: None in the case of Transformer
* src_len ``(batch_size)``
"""
def __init__(
self,
num_layers,
d_model,
heads,
d_ff,
dropout,
attention_dropout,
embeddings,
max_relative_positions,
relative_positions_buckets,
pos_ffn_activation_fn=ActivationFunction.relu,
add_qkvbias=False,
num_kv=0,
add_ffnbias=True,
parallel_residual=False,
layer_norm="standard",
norm_eps=1e-6,
use_ckpting=[],
parallel_gpu=1,
):
super(TransformerEncoder, self).__init__()
self.embeddings = embeddings
self.transformer = nn.ModuleList(
[
TransformerEncoderLayer(
d_model,
heads,
d_ff,
dropout,
attention_dropout,
max_relative_positions=max_relative_positions,
relative_positions_buckets=relative_positions_buckets,
pos_ffn_activation_fn=pos_ffn_activation_fn,
add_qkvbias=add_qkvbias,
num_kv=num_kv,
add_ffnbias=add_ffnbias,
parallel_residual=parallel_residual,
layer_norm=layer_norm,
norm_eps=norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
for i in range(num_layers)
]
)
if layer_norm == "standard":
self.layer_norm = nn.LayerNorm(d_model, eps=norm_eps)
elif layer_norm == "rms":
self.layer_norm = RMSNorm(d_model, eps=norm_eps)
else:
raise ValueError(f"{layer_norm} layer norm type is not supported")
@classmethod
def from_opt(cls, opt, embeddings):
"""Alternate constructor."""
return cls(
opt.enc_layers,
opt.enc_hid_size,
opt.heads,
opt.transformer_ff,
opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
opt.attention_dropout[0]
if type(opt.attention_dropout) is list
else opt.attention_dropout,
embeddings,
opt.max_relative_positions,
opt.relative_positions_buckets,
pos_ffn_activation_fn=opt.pos_ffn_activation_fn,
add_qkvbias=opt.add_qkvbias,
num_kv=opt.num_kv,
add_ffnbias=opt.add_ffnbias,
parallel_residual=opt.parallel_residual,
layer_norm=opt.layer_norm,
norm_eps=opt.norm_eps,
use_ckpting=opt.use_ckpting,
parallel_gpu=opt.world_size
if opt.parallel_mode == "tensor_parallel"
else 1,
)
def forward(self, src, src_len=None):
"""See :func:`EncoderBase.forward()`"""
enc_out = self.embeddings(src)
mask = ~sequence_mask(src_len).unsqueeze(1)
mask = mask.unsqueeze(1)
mask = mask.expand(-1, -1, mask.size(3), -1)
# mask is now (batch x 1 x slen x slen)
# 1 to be expanded to number of heads in MHA
# Run the forward pass of every layer of the tranformer.
for layer in self.transformer:
enc_out = layer(enc_out, mask)
enc_out = self.layer_norm(enc_out)
return enc_out, None, src_len
def update_dropout(self, dropout, attention_dropout):
self.embeddings.update_dropout(dropout)
for layer in self.transformer:
layer.update_dropout(dropout, attention_dropout)