Upload 7 files
Browse files- app.py +102 -0
- filters.py +53 -0
- filters/filter_bw.jpg +0 -0
- filters/filter_pencil_sketch.jpg +0 -0
- filters/filter_sepia.jpg +0 -0
- filters/filter_vignette.jpg +0 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from filters import *
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
|
9 |
+
# Generating a button to download the image file.
|
10 |
+
def download_image_button(img, filename, text):
|
11 |
+
buffered = io.BytesIO()
|
12 |
+
img.save(buffered, format="JPEG")
|
13 |
+
img_bytes = buffered.getvalue()
|
14 |
+
|
15 |
+
# Using st.download_button to handle the download
|
16 |
+
st.download_button(label=text, data=img_bytes, file_name=filename, mime="image/jpeg", use_container_width=True)
|
17 |
+
|
18 |
+
|
19 |
+
# Set title.
|
20 |
+
st.title("Artistic Image Filters")
|
21 |
+
|
22 |
+
# Upload image.
|
23 |
+
uploaded_file = st.file_uploader("Choose an image file:", type=["png", "jpg"])
|
24 |
+
|
25 |
+
if uploaded_file is not None:
|
26 |
+
# Convert the file to an opencv image.
|
27 |
+
raw_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
28 |
+
img = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR)
|
29 |
+
input_col, output_col = st.columns(2)
|
30 |
+
with input_col:
|
31 |
+
st.header("Original")
|
32 |
+
# Display uploaded image.
|
33 |
+
st.image(img, channels="BGR", use_column_width=True)
|
34 |
+
|
35 |
+
st.header("Filter Examples:")
|
36 |
+
|
37 |
+
# Display radio buttons for choosing the filter to apply.
|
38 |
+
option = st.radio(
|
39 |
+
"Select a filter:",
|
40 |
+
(
|
41 |
+
"None",
|
42 |
+
"Black and White",
|
43 |
+
"Sepia / Vintage",
|
44 |
+
"Vignette Effect",
|
45 |
+
"Pencil Sketch",
|
46 |
+
),
|
47 |
+
horizontal=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
# Define columns for thumbnail images.
|
51 |
+
col1, col2, col3, col4 = st.columns(4)
|
52 |
+
with col1:
|
53 |
+
st.caption("Black and White")
|
54 |
+
st.image("filter_bw.jpg")
|
55 |
+
with col2:
|
56 |
+
st.caption("Sepia / Vintage")
|
57 |
+
st.image("filter_sepia.jpg")
|
58 |
+
with col3:
|
59 |
+
st.caption("Vignette Effect")
|
60 |
+
st.image("filter_vignette.jpg")
|
61 |
+
with col4:
|
62 |
+
st.caption("Pencil Sketch")
|
63 |
+
st.image("filter_pencil_sketch.jpg")
|
64 |
+
|
65 |
+
# Flag for showing output image.
|
66 |
+
output_flag = 1
|
67 |
+
# Colorspace of output image.
|
68 |
+
color = "BGR"
|
69 |
+
|
70 |
+
# Generate filtered image based on the selected option.
|
71 |
+
if option == "None":
|
72 |
+
# Don't show output image.
|
73 |
+
output_flag = 0
|
74 |
+
elif option == "Black and White":
|
75 |
+
output = bw_filter(img)
|
76 |
+
color = "GRAY"
|
77 |
+
elif option == "Sepia / Vintage":
|
78 |
+
output = sepia(img)
|
79 |
+
elif option == "Vignette Effect":
|
80 |
+
level = st.slider("level", 0, 5, 2)
|
81 |
+
output = vignette(img, level)
|
82 |
+
elif option == "Pencil Sketch":
|
83 |
+
ksize = st.slider("Blur kernel size", 1, 11, 5, step=2)
|
84 |
+
output = pencil_sketch(img, ksize)
|
85 |
+
color = "GRAY"
|
86 |
+
|
87 |
+
with output_col:
|
88 |
+
if output_flag == 1:
|
89 |
+
st.header("Output")
|
90 |
+
st.image(output, channels=color)
|
91 |
+
# fromarray converts cv2 image into PIL format for saving it using download button.
|
92 |
+
if color == "BGR":
|
93 |
+
result = Image.fromarray(output[:, :, ::-1])
|
94 |
+
else:
|
95 |
+
result = Image.fromarray(output)
|
96 |
+
|
97 |
+
# Display the download button with the text "Download Output"
|
98 |
+
download_image_button(result, "output.jpg", "Download Output")
|
99 |
+
else:
|
100 |
+
st.header("Output")
|
101 |
+
st.image(img, channels=color)
|
102 |
+
|
filters.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
|
6 |
+
@st.cache_data
|
7 |
+
def bw_filter(img):
|
8 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
9 |
+
return img_gray
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_data
|
13 |
+
def vignette(img, level=2):
|
14 |
+
height, width = img.shape[:2]
|
15 |
+
|
16 |
+
# Generate vignette mask using Gaussian kernels.
|
17 |
+
X_resultant_kernel = cv2.getGaussianKernel(width, width / level)
|
18 |
+
Y_resultant_kernel = cv2.getGaussianKernel(height, height / level)
|
19 |
+
|
20 |
+
# Generating resultant_kernel matrix.
|
21 |
+
kernel = Y_resultant_kernel * X_resultant_kernel.T
|
22 |
+
mask = kernel / kernel.max()
|
23 |
+
|
24 |
+
img_vignette = np.copy(img)
|
25 |
+
|
26 |
+
# Apply the mask to each channel in the input image.
|
27 |
+
for i in range(3):
|
28 |
+
img_vignette[:, :, i] = img_vignette[:, :, i] * mask
|
29 |
+
|
30 |
+
return img_vignette
|
31 |
+
|
32 |
+
|
33 |
+
@st.cache_data
|
34 |
+
def sepia(img):
|
35 |
+
img_sepia = img.copy()
|
36 |
+
# Converting to RGB as sepia matrix below is for RGB.
|
37 |
+
img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_BGR2RGB)
|
38 |
+
img_sepia = np.array(img_sepia, dtype=np.float64)
|
39 |
+
img_sepia = cv2.transform(
|
40 |
+
img_sepia, np.matrix([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]])
|
41 |
+
)
|
42 |
+
# Clip values to the range [0, 255].
|
43 |
+
img_sepia = np.clip(img_sepia, 0, 255)
|
44 |
+
img_sepia = np.array(img_sepia, dtype=np.uint8)
|
45 |
+
img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_RGB2BGR)
|
46 |
+
return img_sepia
|
47 |
+
|
48 |
+
|
49 |
+
@st.cache_data
|
50 |
+
def pencil_sketch(img, ksize=5):
|
51 |
+
img_blur = cv2.GaussianBlur(img, (ksize, ksize), 0, 0)
|
52 |
+
img_sketch, _ = cv2.pencilSketch(img_blur)
|
53 |
+
return img_sketch
|
filters/filter_bw.jpg
ADDED
filters/filter_pencil_sketch.jpg
ADDED
filters/filter_sepia.jpg
ADDED
filters/filter_vignette.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
opencv-python==4.10.0.84
|
2 |
+
streamlit==1.38.0
|