File size: 101,250 Bytes
0f90f73 b49eb8e f4daac8 b49eb8e ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 |
# coding: utf-8
import os
os.environ['CURL_CA_BUNDLE'] = ''
try:
import detectron2
except:
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from pathlib import Path
import sys
sys.path.insert(0, str(Path(__file__).resolve().parent / "third-party" / "lama"))
import random
import torch
import cv2
import re
import uuid
from PIL import Image, ImageOps
import math
import numpy as np
import argparse
import inspect
from functools import partial
import shutil
import whisper
import gradio as gr
import gradio.themes.base as ThemeBase
from gradio.themes.utils import colors, fonts, sizes
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms.openai import OpenAI
from iGPT.models import VideoCaption, ActionRecognition, DenseCaption, GenerateTikTokVideo
from iGPT.models import HuskyVQA, LDMInpainting
from iGPT.models.utils import (cal_dilate_factor, dilate_mask, gen_new_name,
seed_everything, prompts, blend_gt2pt)
# from segment_anything.utils.amg import remove_small_regions
from segment_anything import build_sam, sam_model_registry, SamAutomaticMaskGenerator
from iGPT.models.sam_preditor import SamPredictor
from bark import SAMPLE_RATE, generate_audio
import matplotlib.pyplot as plt
# Please DO NOT MOVE THE IMPORT ORDER FOR easyocr.
import easyocr
from saicinpainting.evaluation.utils import move_to_device
from saicinpainting.training.trainers import load_checkpoint
from saicinpainting.evaluation.data import pad_tensor_to_modulo
import openai
# openai.api_base = 'https://closeai.deno.dev/v1'
GLOBAL_SEED=1912
INTERN_CHAT_PREFIX = """InternGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. InternGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
InternGPT is able to process and understand large amounts of text and images. As a language model, InternGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and InternGPT can invoke different tools to indirectly understand pictures. When talking about images, InternGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, InternGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. InternGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.
Human may provide new figures to InternGPT with a description. The description helps InternGPT to understand this image, but InternGPT should use tools to finish following tasks, rather than directly imagine from the description.
Overall, InternGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics.
TOOLS:
------
InternGPT has access to the following tools:"""
INTERN_CHAT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action, you can find all input paths in the history but can not feed the tool's description into the tool.
Observation: the result of the action
```
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""
INTERN_CHAT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
You will remember to provide the image file name loyally if it's provided in the last tool observation.
Begin!
Previous conversation history:
{chat_history}
New input: {input}
Since InternGPT is a text language model, InternGPT must use tools to observe images rather than imagination.
The thoughts and observations are only visible for InternGPT, InternGPT should remember to repeat important information in the final response for Human.
Thought: Do I need to use a tool? {agent_scratchpad} Let's think step by step.
"""
INTERN_CHAT_PREFIX_CN = """InternGPT 旨在能够协助完成范围广泛的文本和视觉相关任务,从回答简单的问题到提供对广泛主题的深入解释和讨论。 InternGPT 能够根据收到的输入生成类似人类的文本,使其能够进行听起来自然的对话,并提供连贯且与手头主题相关的响应。
InternGPT 能够处理和理解大量文本和图像。作为一种语言模型,InternGPT 不能直接读取图像,但它有一系列工具来完成不同的视觉任务。每张图片都会有一个文件名,格式为“image/xxx.png”,InternGPT可以调用不同的工具来间接理解图片。在谈论图片时,InternGPT 对文件名的要求非常严格,绝不会伪造不存在的文件。在使用工具生成新的图像文件时,InternGPT也知道图像可能与用户需求不一样,会使用其他视觉问答工具或描述工具来观察真实图像。 InternGPT 能够按顺序使用工具,并且忠于工具观察输出,而不是伪造图像内容和图像文件名。如果生成新图像,它将记得提供上次工具观察的文件名。
Human 可能会向 InternGPT 提供带有描述的新图形。描述帮助 InternGPT 理解这个图像,但 InternGPT 应该使用工具来完成以下任务,而不是直接从描述中想象。有些工具将会返回英文描述,但你对用户的聊天应当采用中文。
总的来说,InternGPT 是一个强大的可视化对话辅助工具,可以帮助处理范围广泛的任务,并提供关于范围广泛的主题的有价值的见解和信息。
工具列表:
------
InternGPT 可以使用这些工具:"""
INTERN_CHAT_FORMAT_INSTRUCTIONS_CN = """用户使用中文和你进行聊天,但是工具的参数应当使用英文。如果要调用工具,你必须遵循如下格式:
```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```
当你不再需要继续调用工具,而是对观察结果进行总结回复时,你必须使用如下格式:
```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""
INTERN_CHAT_SUFFIX_CN = """你对文件名的正确性非常严格,而且永远不会伪造不存在的文件。
开始!
因为InternGPT是一个文本语言模型,必须使用工具去观察图片而不是依靠想象。
推理想法和观察结果只对InternGPT可见,需要记得在最终回复时把重要的信息重复给用户,你只能给用户返回中文句子。我们一步一步思考。在你使用工具时,工具的参数只能是英文。
聊天历史:
{chat_history}
新输入: {input}
Thought: Do I need to use a tool? {agent_scratchpad}
"""
os.makedirs('image', exist_ok=True)
class InstructPix2Pix:
def __init__(self, device):
print(f"Initializing InstructPix2Pix to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
safety_checker=None,
torch_dtype=self.torch_dtype).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
@prompts(name="Instruct Image Using Text",
description="useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. ")
def inference(self, inputs):
"""Change style of image."""
print("===>Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
original_image = Image.open(image_path)
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Text2Image:
def __init__(self, device):
print(f"Initializing Text2Image to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
torch_dtype=self.torch_dtype)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ")
def inference(self, text):
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:6]}.png")
image_filename = gen_new_name(image_filename)
prompt = text + ', ' + self.a_prompt
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
image.save(image_filename)
print(
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
return image_filename
class Image2Canny:
def __init__(self, device):
print("Initializing Image2Canny")
self.low_threshold = 100
self.high_threshold = 200
@prompts(name="Edge Detection On Image",
description="useful when you want to detect the edge of the image. "
"like: detect the edges of this image, or canny detection on image, "
"or perform edge detection on this image, or detect the canny image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
image = np.array(image)
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
canny = canny[:, :, None]
canny = np.concatenate([canny, canny, canny], axis=2)
canny = Image.fromarray(canny)
# updated_image_path = get_new_image_name(inputs, func_name="edge")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
canny.save(updated_image_path)
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
return updated_image_path
class CannyText2Image:
def __init__(self, device):
print(f"Initializing CannyText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Canny Image",
description="useful when you want to generate a new real image from both the user description and a canny image."
" like: generate a real image of a object or something from this canny image,"
" or generate a new real image of a object or something from this edge image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="canny2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Line:
def __init__(self, device):
print("Initializing Image2Line")
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Line Detection On Image",
description="useful when you want to detect the straight line of the image. "
"like: detect the straight lines of this image, or straight line detection on image, "
"or perform straight line detection on this image, or detect the straight line image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
mlsd = self.detector(image)
# updated_image_path = get_new_image_name(inputs, func_name="line-of")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
mlsd.save(updated_image_path)
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
return updated_image_path
class LineText2Image:
def __init__(self, device):
print(f"Initializing LineText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Line Image",
description="useful when you want to generate a new real image from both the user description "
"and a straight line image. "
"like: generate a real image of a object or something from this straight line image, "
"or generate a new real image of a object or something from this straight lines. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="line2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Hed:
def __init__(self, device):
print("Initializing Image2Hed")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Hed Detection On Image",
description="useful when you want to detect the soft hed boundary of the image. "
"like: detect the soft hed boundary of this image, or hed boundary detection on image, "
"or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
hed = self.detector(image)
# updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
hed.save(updated_image_path)
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
return updated_image_path
class HedText2Image:
def __init__(self, device):
print(f"Initializing HedText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
description="useful when you want to generate a new real image from both the user description "
"and a soft hed boundary image. "
"like: generate a real image of a object or something from this soft hed boundary image, "
"or generate a new real image of a object or something from this hed boundary. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="hed2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Scribble:
def __init__(self, device):
print("Initializing Image2Scribble")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Sketch Detection On Image",
description="useful when you want to generate a scribble of the image. "
"like: generate a scribble of this image, or generate a sketch from this image, "
"detect the sketch from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
scribble = self.detector(image, scribble=True)
# updated_image_path = get_new_image_name(inputs, func_name="scribble")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
scribble.save(updated_image_path)
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
return updated_image_path
class ScribbleText2Image:
def __init__(self, device):
print(f"Initializing ScribbleText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Sketch Image",
description="useful when you want to generate a new real image from both the user description and "
"a scribble image or a sketch image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Pose:
def __init__(self, device):
print("Initializing Image2Pose")
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Pose Detection On Image",
description="useful when you want to detect the human pose of the image. "
"like: generate human poses of this image, or generate a pose image from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
pose = self.detector(image)
# updated_image_path = get_new_image_name(inputs, func_name="human-pose")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
pose.save(updated_image_path)
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
return updated_image_path
class PoseText2Image:
def __init__(self, device):
print(f"Initializing PoseText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.num_inference_steps = 20
self.unconditional_guidance_scale = 9.0
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Pose Image",
description="useful when you want to generate a new real image from both the user description "
"and a human pose image. "
"like: generate a real image of a human from this human pose image, "
"or generate a new real image of a human from this pose. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="pose2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class SegText2Image:
def __init__(self, device):
print(f"Initializing SegText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Segmentations",
description="useful when you want to generate a new real image from both the user description and segmentations. "
"like: generate a real image of a object or something from this segmentation image, "
"or generate a new real image of a object or something from these segmentations. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="segment2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
# '''
class ImageText2Image:
template_model=True
def __init__(self, SegText2Image, SegmentAnything):
# print(f"Initializing SegText2Image to {device}")
# self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.SegText2Image = SegText2Image
self.SegmentAnything = SegmentAnything
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Beautify The Image",
description="useful when you want to beatify or create a new real image from both the user description and segmentations. "
"like: generate a real image from its segmentation image, "
"beautify this image with it's segmentations, "
"or beautify this image by user description. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
img_path, prompt = inputs.split(',')[0], inputs.split(',')[1]
seg_path = self.SegmentAnything.inference(img_path)
res_path = self.SegText2Image.inference(f'{seg_path},{prompt}')
print(f"\nProcessed SegText2Image, Input Seg: {img_path}, Input Text: {res_path}, "
f"Output Image: {res_path}")
return res_path
# '''
class Image2Depth:
def __init__(self, device):
print("Initializing Image2Depth")
self.depth_estimator = pipeline('depth-estimation')
@prompts(name="Predict Depth On Image",
description="useful when you want to detect depth of the image. like: generate the depth from this image, "
"or detect the depth map on this image, or predict the depth for this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
depth = self.depth_estimator(image)['depth']
depth = np.array(depth)
depth = depth[:, :, None]
depth = np.concatenate([depth, depth, depth], axis=2)
depth = Image.fromarray(depth)
# updated_image_path = get_new_image_name(inputs, func_name="depth")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
depth.save(updated_image_path)
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class DepthText2Image:
def __init__(self, device):
print(f"Initializing DepthText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Depth",
description="useful when you want to generate a new real image from both the user description and depth image. "
"like: generate a real image of a object or something from this depth image, "
"or generate a new real image of a object or something from the depth map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
w, h = image.size
image = resize_800(image)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="depth2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image = image.resize((w, h))
image.save(updated_image_path)
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Normal:
def __init__(self, device):
print("Initializing Image2Normal")
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
self.bg_threhold = 0.4
@prompts(name="Predict Normal Map On Image",
description="useful when you want to detect norm map of the image. "
"like: generate normal map from this image, or predict normal map of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
original_size = image.size
image = self.depth_estimator(image)['predicted_depth'][0]
image = image.numpy()
image_depth = image.copy()
image_depth -= np.min(image_depth)
image_depth /= np.max(image_depth)
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
x[image_depth < self.bg_threhold] = 0
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
y[image_depth < self.bg_threhold] = 0
z = np.ones_like(x) * np.pi * 2.0
image = np.stack([x, y, z], axis=2)
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
image = image.resize(original_size)
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class NormalText2Image:
def __init__(self, device):
print(f"Initializing NormalText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Normal Map",
description="useful when you want to generate a new real image from both the user description and normal map. "
"like: generate a real image of a object or something from this normal map, "
"or generate a new real image of a object or something from the normal map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class InfinityOutPainting:
template_model = True # Add this line to show this is a template model.
def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
self.llm = OpenAI(temperature=0)
self.ImageCaption = ImageCaptioning
self.ImageEditing = ImageEditing
self.ImageVQA = VisualQuestionAnswering
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
def get_BLIP_vqa(self, image, question):
inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
self.ImageVQA.torch_dtype)
out = self.ImageVQA.model.generate(**inputs)
answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
return answer
def get_BLIP_caption(self, image):
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
self.ImageCaption.torch_dtype)
out = self.ImageCaption.model.generate(**inputs)
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
return BLIP_caption
def check_prompt(self, prompt):
check = f"Here is a paragraph with adjectives. " \
f"{prompt} " \
f"Please change all plural forms in the adjectives to singular forms. "
return self.llm(check)
def get_imagine_caption(self, image, imagine):
BLIP_caption = self.get_BLIP_caption(image)
background_color = self.get_BLIP_vqa(image, 'what is the background color of this image')
style = self.get_BLIP_vqa(image, 'what is the style of this image')
imagine_prompt = f"let's pretend you are an excellent painter and now " \
f"there is an incomplete painting with {BLIP_caption} in the center, " \
f"please imagine the complete painting and describe it" \
f"you should consider the background color is {background_color}, the style is {style}" \
f"You should make the painting as vivid and realistic as possible" \
f"You can not use words like painting or picture" \
f"and you should use no more than 50 words to describe it"
caption = self.llm(imagine_prompt) if imagine else BLIP_caption
caption = self.check_prompt(caption)
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
f'Prompt: {caption}')
return caption
def resize_image(self, image, max_size=1000000, multiple=8):
aspect_ratio = image.size[0] / image.size[1]
new_width = int(math.sqrt(max_size * aspect_ratio))
new_height = int(new_width / aspect_ratio)
new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
return image.resize((new_width, new_height))
def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
old_img = original_img
while (old_img.size != tosize):
prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
crop_w = 15 if old_img.size[0] != tosize[0] else 0
crop_h = 15 if old_img.size[1] != tosize[1] else 0
old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
1])
temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
color="white")
x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
temp_canvas.paste(old_img, (x, y))
temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
height=resized_temp_canvas.height, width=resized_temp_canvas.width,
num_inference_steps=50).images[0].resize(
(temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
image = blend_gt2pt(old_img, image)
old_img = image
return old_img
@prompts(name="Extend An Image",
description="useful when you need to extend an image into a larger image."
"like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
"The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
def inference(self, inputs):
image_path, resolution = inputs.split(',')
width, height = resolution.split('x')
tosize = (int(width), int(height))
image = Image.open(image_path)
image = ImageOps.crop(image, (10, 10, 10, 10))
out_painted_image = self.dowhile(image, tosize, 4, True, False)
# updated_image_path = get_new_image_name(image_path, func_name="outpainting")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
out_painted_image.save(updated_image_path)
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
f"Output Image: {updated_image_path}")
return updated_image_path
##################### New Models #####################
class SegmentAnything:
def __init__(self, device):
print(f"Initializing SegmentAnything to {device}")
self.device = device
sam_checkpoint = "model_zoo/sam_vit_h_4b8939.pth"
model_type = "vit_h"
self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
self.predictor = SamPredictor(self.sam)
self.sam.to(device=device)
# self.clicked_region = None
# self.img_path = None
# self.history_mask_res = None
@prompts(name="Segment Anything on Image",
description="useful when you want to segment anything in the image. "
"like: segment anything from this image, "
"The input to this tool should be a string, "
"representing the image_path.")
def inference(self, inputs):
print("Inputs: ", inputs)
img_path = inputs.strip()
img = np.array(Image.open(img_path))
annos = self.segment_anything(img)
full_img, _ = self.show_annos(annos)
seg_all_image_path = gen_new_name(img_path, 'seg')
full_img.save(seg_all_image_path, "PNG")
print(f"\nProcessed SegmentAnything, Input Image: {inputs}, Output Depth: {seg_all_image_path}")
return seg_all_image_path
@prompts(name="Segment the Clicked Region in the Image",
description="useful when you want to segment the masked region or block in the image. "
"like: segment the masked region in this image, "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the mask_path")
def inference_by_mask(self, inputs):
img_path, mask_path = inputs.split(',')[0], inputs.split(',')[1]
img_path = img_path.strip()
mask_path = mask_path.strip()
clicked_mask = Image.open(mask_path).convert('L')
clicked_mask = np.array(clicked_mask, dtype=np.uint8)
# mask = np.array(Image.open(mask_path).convert('L'))
res_mask = self.segment_by_mask(clicked_mask)
res_mask = res_mask.astype(np.uint8)*255
filaname = gen_new_name(self.img_path, 'mask')
mask_img = Image.fromarray(res_mask)
mask_img.save(filaname, "PNG")
return filaname
def segment_by_mask(self, mask, features):
random.seed(GLOBAL_SEED)
idxs = np.nonzero(mask)
num_points = min(max(1, int(len(idxs[0]) * 0.01)), 16)
sampled_idx = random.sample(range(0, len(idxs[0])), num_points)
new_mask = []
for i in range(len(idxs)):
new_mask.append(idxs[i][sampled_idx])
points = np.array(new_mask).reshape(2, -1).transpose(1, 0)[:, ::-1]
labels = np.array([1] * num_points)
res_masks, scores, _ = self.predictor.predict(
features=features,
point_coords=points,
point_labels=labels,
multimask_output=True,
)
return res_masks[np.argmax(scores), :, :]
def segment_anything(self, img):
# img = cv2.imread(img_path)
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask_generator = SamAutomaticMaskGenerator(self.sam)
annos = mask_generator.generate(img)
return annos
def get_detection_map(self, img_path):
annos = self.segment_anything(img_path)
_, detection_map = self.show_anns(annos)
return detection_map
def get_image_embedding(self, img):
return self.predictor.set_image(img)
def show_annos(self, anns):
# From https://github.com/sail-sg/EditAnything/blob/main/sam2image.py#L91
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann['segmentation']
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img * 255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
full_img = Image.fromarray(np.uint8(full_img))
return full_img, res
def segment_by_points(self, img, points, lables):
# TODO
# masks, _, _ = self.predictor.predict(
# point_coords=np.array(points[-1]),
# point_labels=np.array(lables[-1]),
# # mask_input=mask_input[-1],
# multimask_output=True, # SAM outputs 3 masks, we choose the one with highest score
# )
# # return masks_[np.argmax(scores_), :, :]
# return masks
pass
class ExtractMaskedAnything:
"""
prepare:
```
curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
unzip big-lama.zip
```
"""
template_model=True # Add this line to show this is a template model.
def __init__(self, SegmentAnything):
self.SegmentAnything = SegmentAnything
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Extract the masked anything",
description="useful when you want to extract the masked region in the image. "
"like: extract the masked region or keep the masked region in the image"
"The input to this tool should be a comma separated string of two, "
"representing the image_path and mask_path")
def inference(self, inputs):
print("Inputs: ", inputs)
image_path, seg_mask_path = inputs.split(',')
image_path = image_path.strip()
seg_mask_path = seg_mask_path.strip()
img = np.array(Image.open(image_path).convert("RGB"))
seg_mask = Image.open(seg_mask_path).convert('RGB')
seg_mask = np.array(seg_mask, dtype=np.uint8)
new_img = img * (seg_mask // 255)
rgba_img = np.concatenate((new_img, seg_mask[:, :, :1]), axis=-1).astype(np.uint8)
rgba_img = Image.fromarray(rgba_img).convert("RGBA")
new_name = gen_new_name(image_path, "ExtractMaskedAnything")
rgba_img.save(new_name, 'PNG')
print(f"\nProcessed ExtractMaskedAnything, Input Image: {inputs}, Output Image: {new_name}")
return new_name
class ReplaceMaskedAnything:
def __init__(self, device):
print(f"Initializing ReplaceMaskedAnything to {device}")
self.device=device
self.revision = 'fp16' if 'cuda' in device else None
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
@prompts(name="Replace the Masked Object",
description="useful when you want to replace an object by clicking in the image "
"with other object or something. "
"like: replace the masked object with a new object or something. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path and the mask_path and the prompt")
def inference(self, inputs):
print("Inputs: ", inputs)
image_path, mask_path = inputs.split(',')[:2]
image_path = image_path.strip()
mask_path = mask_path.strip()
prompt = ','.join(inputs.split(',')[2:]).strip()
img = Image.open(image_path)
original_shape = img.size
img = img.resize((512, 512))
mask_img = Image.open(mask_path).convert("L").resize((512, 512))
mask = np.array(mask_img, dtype=np.uint8)
dilate_factor = cal_dilate_factor(mask)
mask = dilate_mask(mask, dilate_factor)
gen_img = self.inpaint(prompt=prompt, image=img, mask_image=mask_img).images[0]
# gen_img = resize_image(np.array(gen_img), 512)
gen_img = gen_img.resize(original_shape)
gen_img_path = gen_new_name(image_path, 'ReplaceMaskedAnything')
gen_img.save(gen_img_path, 'PNG')
print(f"\nProcessed ReplaceMaskedAnything, Input Image: {inputs}, Output Depth: {gen_img_path}.")
return gen_img_path
class ImageOCRRecognition:
def __init__(self, device):
print(f"Initializing ImageOCRRecognition to {device}")
self.device = device
self.reader = easyocr.Reader(['ch_sim', 'en'], gpu=device) # this needs to run only once to load the model into memory
@prompts(name="recognize the optical characters in the image",
description="useful when you want to recognize the characters or words in the clicked region of image. "
"like: recognize the characters or words in the clicked region."
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the mask_path")
def inference_by_mask(self, inputs=None):
image_path, mask_path = inputs.split(',')[0], inputs.split(',')[1]
image_path = image_path.strip()
mask_path = mask_path.strip()
mask = Image.open(mask_path).convert('L')
mask = np.array(mask, dtype=np.uint8)
ocr_res = self.readtext(image_path)
seleted_ocr_text = self.get_ocr_by_mask(mask, ocr_res)
print(
f"\nProcessed ImageOCRRecognition, Input Image: {inputs}, "
f"Output Text: {seleted_ocr_text}.")
return seleted_ocr_text
def get_ocr_by_mask(self, mask, ocr_res):
inds =np.where(mask != 0)
inds = (inds[0][::8], inds[1][::8])
# self.result = self.reader.readtext(self.image_path)
if len(inds[0]) == 0:
# self.result = self.reader.readtext(image_path)
return 'No characters in the image'
# reader = easyocr.Reader(['ch_sim', 'en', 'fr', 'it', 'ja', 'ko', 'ru', 'de', 'pt']) # this needs to run only once to load the model into memory
ocr_text_list = []
for i in range(len(inds[0])):
res = self.search((inds[1][i], inds[0][i]), ocr_res)
if res is not None and len(res) > 0:
ocr_text_list.append(res)
ocr_text_list = list(dict.fromkeys(ocr_text_list))
ocr_text = '\n'.join(ocr_text_list)
if ocr_text is None or len(ocr_text.strip()) == 0:
ocr_text = 'No characters in the image'
else:
ocr_text = '\n' + ocr_text
return ocr_text
@prompts(name="recognize all optical characters in the image",
description="useful when you want to recognize all characters or words in the image. "
"like: recognize all characters and words in the image."
"The input to this tool should be a string, "
"representing the image_path.")
def inference(self, inputs):
image_path = inputs.strip()
result = self.reader.readtext(image_path)
# print(self.result)
res_text = []
for item in result:
# ([[x, y], [x, y], [x, y], [x, y]], text, confidence)
res_text.append(item[1])
print(
f"\nProcessed ImageOCRRecognition, Input Image: {inputs}, "
f"Output Text: {res_text}")
return res_text
# def preprocess(self, img, img_path):
# self.image_path = img_path
# self.result = self.reader.readtext(self.image_path)
def readtext(self, img_path):
return self.reader.readtext(img_path)
def search(self, coord, orc_res):
for item in orc_res:
left_top = item[0][0]
right_bottom=item[0][-2]
if (coord[0] >= left_top[0] and coord[1] >= left_top[1]) and \
(coord[0] <= right_bottom[0] and coord[1] <= right_bottom[1]):
return item[1]
return ''
class ConversationBot:
def __init__(self, load_dict):
print(f"Initializing InternGPT, load_dict={load_dict}")
if 'HuskyVQA' not in load_dict:
raise ValueError("You have to load ImageCaptioning as a basic function for iGPT")
if 'SegmentAnything' not in load_dict:
raise ValueError("You have to load SegmentAnything as a basic function for iGPT")
if 'ImageOCRRecognition' not in load_dict:
raise ValueError("You have to load ImageOCRRecognition as a basic function for iGPT")
self.models = {}
self.audio_model = whisper.load_model("small").to('cuda:0')
# Load Basic Foundation Models
for class_name, device in load_dict.items():
self.models[class_name] = globals()[class_name](device=device)
# Load Template Foundation Models
for class_name, module in globals().items():
if getattr(module, 'template_model', False):
template_required_names = {k for k in inspect.signature(module.__init__).parameters.keys() if k!='self'}
loaded_names = set([type(e).__name__ for e in self.models.values()])
if template_required_names.issubset(loaded_names):
self.models[class_name] = globals()[class_name](
**{name: self.models[name] for name in template_required_names})
self.tools = []
for instance in self.models.values():
for e in dir(instance):
if e.startswith('inference'):
func = getattr(instance, e)
self.tools.append(Tool(name=func.name, description=func.description, func=func))
def find_latest_image(self, file_list):
res = None
prev_mtime = None
for file_item in file_list:
file_path = os.path.basename(file_item[0])
if not os.path.exists(file_item[0]):
continue
if res is None:
res = file_item[0]
ms = int(file_path.split('_')[0][3:]) * 0.001
prev_mtime = int(os.path.getmtime(file_item[0])) + ms
else:
ms = int(file_path.split('_')[0][3:]) * 0.001
cur_mtime = int(os.path.getmtime(file_item[0])) + ms
# cur_mtime = cur_mtime + ms
if cur_mtime > prev_mtime:
prev_mtime = cur_mtime
res = file_item[0]
return res
def run_task(self, use_voice, text, audio_path, state, user_state):
if use_voice:
state, _, user_state = self.run_audio(audio_path, state, user_state)
else:
state, _, user_state = self.run_text(text, state, user_state)
return state, state, user_state
def find_param(self, msg, keyword, excluded=False):
p1 = re.compile(f'(image/[-\\w]*.(png|mp4))')
p2 = re.compile(f'(image/[-\\w]*_{keyword}.(png|mp4))')
if keyword == None or len(keyword) == 0:
out_filenames = p1.findall(msg)
elif not excluded:
out_filenames = p2.findall(msg)
elif excluded:
all_files = p1.findall(msg)
excluded_files = p2.findall(msg)
out_filenames = set(all_files) - set(excluded_files)
res = self.find_latest_image(out_filenames)
return res
def rectify_action(self, inputs, history_msg, user_state):
print('Rectify the action.')
print(inputs)
func = None
func_name = None
func_inputs = None
if 'remove' in inputs.lower() or 'erase' in inputs.lower():
# func = self.models['RemoveMaskedAnything']
# cls = self.models.get('RemoveMaskedAnything', None)
cls = self.models.get('LDMInpainting', None)
if cls is not None:
func = cls.inference
mask_path = self.find_param(history_msg+inputs, 'mask')
img_path = self.find_param(history_msg+inputs, 'mask', excluded=True)
func_inputs = f'{img_path},{mask_path}'
func_name = 'RemoveMaskedAnything'
elif 'replace' in inputs.lower():
cls = self.models.get('ReplaceMaskedAnything', None)
if cls is not None:
func = cls.inference
mask_path = self.find_param(history_msg+inputs, 'mask')
# img_path = self.find_param(history_msg, 'raw')
img_path = self.find_param(history_msg+inputs, 'mask', excluded=True)
prompt = inputs.strip()
func_inputs = f'{img_path},{mask_path},{prompt}'
func_name = 'ReplaceMaskedAnything'
elif 'generate' in inputs.lower() or 'beautify' in inputs.lower():
# print('*' * 40)
cls = self.models.get('ImageText2Image', None)
if cls is not None:
func = cls.inference
img_path = self.find_param(history_msg+inputs, '')
# img_path = self.find_param(history_msg, 'raw')
prompt = inputs.strip()
func_inputs = f'{img_path},{prompt}'
func_name = 'ImageText2Image'
elif 'describe' in inputs.lower() or 'introduce' in inputs.lower():
cls = self.models.get('HuskyVQA', None)
func_name = 'HuskyVQA'
if cls is not None and 'mask' in inputs.lower():
prompt = inputs.strip()
func = cls.inference_by_mask
img_path = self.find_param(history_msg+inputs, 'mask', excluded=True)
mask_path = self.find_param(history_msg+inputs, 'mask')
func_inputs = f'{img_path},{mask_path},{prompt}'
elif cls is not None:
prompt = inputs.strip()
func = cls.inference
img_path = self.find_param(history_msg+inputs, 'mask', excluded=True)
func_inputs = f'{img_path}'
elif 'image' in inputs.lower() or 'figure' in inputs.lower() or 'picture' in inputs.lower():
cls = self.models.get('HuskyVQA', None)
func_name = 'HuskyVQA'
if cls is not None:
func = cls.inference
img_path = self.find_param(history_msg+inputs, 'mask', excluded=True)
# img_path = self.find_param(history_msg, 'raw')
prompt = inputs.strip()
func_inputs = f'{img_path},{prompt}'
else:
# raise NotImplementedError('Can not find the matched function.')
res = user_state[0]['agent'](f"You can use history message to sanswer this question without using any tools. {inputs}")
res = res['output'].replace("\\", "/")
print(f'{func_name}: {func_inputs}')
return_res = None
if func is None:
res = f"I have tried to use the tool: \"{func_name}\" to acquire the results, but it is not sucessfully loaded."
else:
return_res = func(func_inputs)
if os.path.exists(return_res):
res = f"I have used the tool: \"{func_name}\" to obtain the results. The output image is named {return_res}."
else:
res = f"I have used the tool: \"{func_name}\" to obtain the results. {return_res}"
print(f"I have used the tool: \"{func_name}\" to obtain the results. The Inputs: {func_inputs}. Result: {return_res}.")
return res
def check_illegal_files(self, file_list):
illegal_files = []
for file_item in file_list:
if not os.path.exists(file_item[0]):
illegal_files.append(file_item[0])
return illegal_files
def run_text(self, text, state, user_state):
if text is None or len(text) == 0:
state += [(None, 'Please input text.')]
return state, state, user_state
user_state[0]['agent'].memory.buffer = cut_dialogue_history(user_state[0]['agent'].memory.buffer, keep_last_n_words=500)
pattern = re.compile('(image/[-\\w]*.(png|mp4))')
try:
response = user_state[0]['agent']({"input": text.strip()})['output']
response = response.replace("\\", "/")
out_filenames = pattern.findall(response)
illegal_files = self.check_illegal_files(out_filenames)
if len(illegal_files) > 0:
raise FileNotFoundError(f'{illegal_files} do (does) not exist.')
res = self.find_latest_image(out_filenames)
except Exception as err1:
# state += [(text, 'Sorry, I failed to understand your instruction. You can try it again or turn to more powerful language model.')]
print(f'Error: {err1}')
try:
response = self.rectify_action(text, user_state[0]['agent'].memory.buffer[:], user_state)
# print('response = ', response)
out_filenames = pattern.findall(response)
res = self.find_latest_image(out_filenames)
# print(out_filenames)
user_state[0]['agent'].memory.buffer += f'\nHuman: {text.strip()}\n' + f'AI:{response})'
except Exception as err2:
print(f'Error: {err2}')
state += [(text, 'Sorry, I failed to understand your instruction. You can try it again or turn to more powerful language model.')]
return state, state, user_state
if res is not None and user_state[0]['agent'].memory.buffer.count(res) <= 1:
state = state + [(text, response + f' `{res}` is as follows: ')]
state = state + [(None, (res, ))]
else:
state = state + [(text, response)]
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return state, state, user_state
def run_audio(self, audio_path, state, user_state):
print(f'audio_path = {audio_path}')
if audio_path is None or not os.path.exists(audio_path):
state += [(None, 'No audio input. Please stop recording first and then send the audio.')]
return state, state
if self.audio_model is None:
self.audio_model = whisper.load_model("small").to('cuda:0')
text = self.audio_model.transcribe(audio_path)["text"]
res = self.run_text(text, state, user_state)
print(f"\nProcessed run_audio, Input transcribed audio: {text}\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return res[0], res[1], res[2]
def upload_image(self, image, state, user_state):
# [txt, click_img, state, user_state], [chatbot, txt, state, user_state]
# self.reset()
print('upload an image')
user_state = self.clear_user_state(False, user_state)
img = image['image']
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:6]}.png")
image_filename = gen_new_name(image_filename, 'image')
img.save(image_filename, "PNG")
# self.uploaded_image_filename = image_filename
user_state[0]['image_path'] = image_filename
img = img.convert('RGB')
image_caption = self.models['HuskyVQA'].inference_captioning(image_filename)
# description = 'Debug'
user_state[0]['image_caption'] = image_caption
ocr_res = None
user_state[0]['ocr_res'] = []
if 'ImageOCRRecognition' in self.models.keys():
ocr_res = self.models['ImageOCRRecognition'].inference(image_filename)
ocr_res_raw = self.models['ImageOCRRecognition'].readtext(image_filename)
if ocr_res is not None and len(ocr_res) > 0:
Human_prompt = f'\nHuman: provide a image named {image_filename}. The description is: {image_caption} OCR result is: {ocr_res}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
user_state[0]['ocr_res'] = ocr_res_raw
else:
Human_prompt = f'\nHuman: provide a image named {image_filename}. The description is: {image_caption} This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
AI_prompt = "Received. "
# self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + ' AI: ' + AI_prompt
user_state[0]['agent'].memory.buffer += Human_prompt + 'AI: ' + AI_prompt
state = state + [(f"![](file={image_filename})*{image_filename}*", AI_prompt)]
print(f"\nProcessed upload_image, Input image: {image_filename}\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return state, state, user_state
def upload_video(self, video_path, state, user_state):
# self.reset()
print('upload a video')
user_state = self.clear_user_state(False, user_state)
vid_name = os.path.basename(video_path)
# vid_name = gen_new_name(vid_name, '', vid_name.split('.')[-1])
new_video_path = os.path.join('./image/', vid_name)
new_video_path = gen_new_name(new_video_path, 'image', vid_name.split('.')[-1])
shutil.copy(video_path, new_video_path)
user_state[0]['video_path'] = new_video_path
if "VideoCaption" in self.models.keys():
description = self.models['VideoCaption'].inference(new_video_path)
else:
description = 'A video.'
user_state[0]['video_caption'] = description
Human_prompt = f'\nHuman: provide a video named {new_video_path}. The description is: {description}. This information helps you to understand this video, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
AI_prompt = f"Received video: {new_video_path} "
# self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
user_state[0]['agent'].memory.buffer += Human_prompt + 'AI: ' + AI_prompt
state = state + [((new_video_path, ), AI_prompt)]
# print('exists = ', os.path.exists("./tmp_files/1e7f_f4236666_tmp.mp4"))
print(f"\nProcessed upload_video, Input video: `{new_video_path}`\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return state, state, user_state
def blend_mask(self, img, mask):
mask = mask.astype(np.uint8)
transparency_ratio = mask.astype(np.float32) / 255 / 3
transparency_ratio = transparency_ratio[:, :, np.newaxis]
mask = mask[:, :, np.newaxis]
mask[mask != 0] = 255
mask= mask.repeat(3, axis=2)
mask[:,:,0] = 0
mask[:,:,2] = 0
new_img_arr = img * (1 - transparency_ratio) + mask * transparency_ratio
new_img_arr = np.clip(new_img_arr, 0, 255).astype(np.uint8)
# print(new_img_arr.shape)
return new_img_arr
def process_seg(self, image, state, user_state):
Human_prompt="Please process this image based on given mask."
if image is None or \
user_state[0].get('image_path', None) is None or \
not os.path.exists(user_state[0]['image_path']):
AI_prompt = "Please upload an image for processing."
state += [(Human_prompt, AI_prompt)]
return None, state, state, user_state
if 'SegmentAnything' not in self.models.keys():
state += [(None, 'Please load the segmentation tool.')]
return image['image'], state, state, user_state
img = Image.open(user_state[0]['image_path']).convert('RGB')
print(f'user_state[0][\'image_path\'] = {user_state[0]["image_path"]}')
img = np.array(img, dtype=np.uint8)
mask = image['mask'].convert('L')
mask = np.array(mask, dtype=np.uint8)
if mask.sum() == 0:
AI_prompt = "You can click the image and ask me some questions."
state += [(Human_prompt, AI_prompt)]
return image['image'], state, state, user_state
# if 'SegmentAnything' in self.models.keys():
# self.models['SegmentAnything'].clicked_region = mask
if user_state[0].get('features', None) is None:
user_state[0]['features'] = self.models['SegmentAnything'].get_image_embedding(img)
res_mask = self.models['SegmentAnything'].segment_by_mask(mask, user_state[0]['features'])
if user_state[0].get('seg_mask', None) is not None:
res_mask = np.logical_or(user_state[0]['seg_mask'], res_mask)
res_mask = res_mask.astype(np.uint8)*255
user_state[0]['seg_mask'] = res_mask
new_img_arr = self.blend_mask(img, res_mask)
new_img = Image.fromarray(new_img_arr)
res_mask_img = Image.fromarray(res_mask).convert('RGB')
res_mask_path = gen_new_name(user_state[0]['image_path'], 'mask')
res_mask_img.save(res_mask_path)
AI_prompt = f"Received. The mask_path is named {res_mask_path}."
user_state[0]['agent'].memory.buffer += '\nHuman: ' + Human_prompt + '\nAI: ' + AI_prompt
# state = state + [(Human_prompt, f"![](file={seg_filename})*{AI_prompt}*")]
state = state + [(Human_prompt, f'Received. The sgemented figure named `{res_mask_path}` is as follows: ')]
state = state + [(None, (res_mask_path, ))]
print(f"\nProcessed run_image, Input image: `{user_state[0]['image_path']}`\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return new_img, state, state, user_state
def process_ocr(self, image, state, user_state):
Human_prompt="Please process this image based on given mask."
if image is None or \
user_state[0].get('image_path', None) is None or \
not os.path.exists(user_state[0]['image_path']):
AI_prompt = "Please upload an image for processing."
state += [(Human_prompt, AI_prompt)]
return None, state, state, user_state
img = np.array(image['image'])
# img[:100+int(time.time() % 50),:100, :] = 0
img = Image.fromarray(img)
# img = image['image'].convert('RGB')
mask = image['mask'].convert('L')
# mask.save(f'test_{int(time.time()) % 1000}.png')
mask = np.array(mask, dtype=np.uint8)
if mask.sum() == 0:
AI_prompt = "You can click the image and ask me some questions."
state += [(Human_prompt, AI_prompt)]
return image['image'], state, state, user_state
chosen_ocr_res = None
if 'ImageOCRRecognition' in self.models.keys():
# self.models['ImageOCRRecognition'].clicked_region = mask
chosen_ocr_res = self.models['ImageOCRRecognition'].get_ocr_by_mask(mask, user_state[0]['ocr_res'])
else:
state += [Human_prompt, f'ImageOCRRecognition is not loaded.']
if chosen_ocr_res is not None and len(chosen_ocr_res) > 0:
AI_prompt = f'OCR result: {chosen_ocr_res}'
# self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + ' AI: ' + AI_prompt
else:
AI_prompt = 'I didn\'t find any optical characters at given location.'
state = state + [(Human_prompt, AI_prompt)]
user_state[0]['agent'].memory.buffer += '\nHuman: ' + Human_prompt + '\nAI: ' + AI_prompt
print(f"\nProcessed process_ocr, Input image: {self.uploaded_image_filename}\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return image['image'], state, state, user_state
def process_save(self, image, state, user_state):
if image is None:
return None, state, state, user_state
mask_image = image['mask'].convert('RGB')
# mask = np.array(mask, dtype=np.uint8)
# mask_image = Image.fromarray(mask).convert('RGB')
random_name = os.path.join('image', f"{str(uuid.uuid4())[:6]}.png")
mask_image_name = gen_new_name(random_name, 'rawmask')
mask_image.save(mask_image_name, "PNG")
Human_prompt="Please save the given mask."
if np.array(mask_image, dtype=np.uint8).sum() == 0:
AI_prompt = "I can not find the mask. Please operate on the image at first."
state += [(Human_prompt, AI_prompt)]
return state, state, image['image']
AI_prompt = f'The saved mask is named {mask_image_name}: '
state = state + [(Human_prompt, AI_prompt)]
state = state + [(None, (mask_image_name, ))]
user_state[0]['agent'].memory.buffer = user_state[0]['agent'].memory.buffer + Human_prompt + ' AI: ' + AI_prompt
print(f"\nProcessed process_ocr, Input image: {self.uploaded_image_filename}\nCurrent state: {state}\n"
f"Current Memory: {user_state[0]['agent'].memory.buffer}")
return image['image'], state, state, user_state
def clear_user_state(self, clear_momery, user_state):
new_user_state = [{}]
new_user_state[0]['agent'] = user_state[0]['agent']
new_user_state[0]['memory'] = user_state[0]['memory']
if clear_momery:
new_user_state[0]['memory'].clear()
else:
new_user_state[0]['memory'] = user_state[0]['memory']
return new_user_state
class ImageSketcher(gr.Image):
"""
Code is from https://github.com/ttengwang/Caption-Anything/blob/main/app.py#L32.
Fix the bug of gradio.Image that cannot upload with tool == 'sketch'.
"""
is_template = True # Magic to make this work with gradio.Block, don't remove unless you know what you're doing.
def __init__(self, **kwargs):
super().__init__(tool="sketch", **kwargs)
def preprocess(self, x):
if x is None:
return x
if self.tool == 'sketch' and self.source in ["upload", "webcam"]:
# assert isinstance(x, dict)
if isinstance(x, dict) and x['mask'] is None:
decode_image = gr.processing_utils.decode_base64_to_image(x['image'])
width, height = decode_image.size
mask = np.zeros((height, width, 4), dtype=np.uint8)
mask[..., -1] = 255
mask = self.postprocess(mask)
x['mask'] = mask
elif not isinstance(x, dict):
# print(x)
print(f'type(x) = {type(x)}')
decode_image = gr.processing_utils.decode_base64_to_image(x)
width, height = decode_image.size
decode_image.save('sketch_test.png')
# print(width, height)
mask = np.zeros((height, width, 4), dtype=np.uint8)
mask[..., -1] = 255
mask = self.postprocess(mask)
x = {'image': x, 'mask': mask}
x = super().preprocess(x)
return x
class Seafoam(ThemeBase.Base):
def __init__(
self,
*,
primary_hue=colors.emerald,
secondary_hue=colors.blue,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_lg,
font=(
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
# body_background_fill="#D8E9EB",
body_background_fill_dark="AAAAAA",
button_primary_background_fill="*primary_300",
button_primary_background_fill_hover="*primary_200",
button_primary_text_color="black",
button_secondary_background_fill="*secondary_300",
button_secondary_background_fill_hover="*secondary_200",
border_color_primary="#0BB9BF",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="10px",
)
css='''
#chatbot{min-height: 480px}
#image_upload:{align-items: center; min-width: 640px}
'''
def resize_800(image):
w, h = image.size
if w > h:
ratio = w * 1.0 / 800
new_w, new_h = 800, int(h * 1.0 / ratio)
else:
ratio = h * 1.0 / 800
new_w, new_h = int(w * 1.0 / ratio), 800
image = image.resize((new_w, new_h))
return image
def cut_dialogue_history(history_memory, keep_last_n_words=500):
if history_memory is None or len(history_memory) == 0:
return history_memory
tokens = history_memory.split()
n_tokens = len(tokens)
print(f"history_memory:{history_memory}, n_tokens: {n_tokens}")
if n_tokens < keep_last_n_words:
return history_memory
paragraphs = history_memory.split('\n')
last_n_tokens = n_tokens
while last_n_tokens >= keep_last_n_words:
last_n_tokens -= len(paragraphs[0].split(' '))
paragraphs = paragraphs[1:]
return '\n' + '\n'.join(paragraphs)
def login_with_key(bot, debug, api_key):
# Just for debug
print('===>logging in')
user_state = [{}]
is_error = True
if debug:
user_state = init_agent(bot)
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False, value=''), user_state
else:
import openai
from langchain.llms.openai import OpenAI
if api_key and len(api_key) > 30:
os.environ["OPENAI_API_KEY"] = api_key
openai.api_key = api_key
try:
llm = OpenAI(temperature=0)
llm('Hi!')
response = 'Success!'
is_error = False
user_state = init_agent(bot)
except:
# gr.update(visible=True)
response = 'Incorrect key, please input again'
is_error = True
else:
is_error = True
response = 'Incorrect key, please input again'
return gr.update(visible=not is_error), gr.update(visible=is_error), gr.update(visible=is_error, value=response), user_state
def init_agent(bot):
memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
llm = OpenAI(temperature=0)
agent = initialize_agent(
bot.tools,
llm,
agent="conversational-react-description",
verbose=True,
memory=memory,
return_intermediate_steps=True,
agent_kwargs={'prefix': INTERN_CHAT_PREFIX, 'format_instructions': INTERN_CHAT_FORMAT_INSTRUCTIONS,
'suffix': INTERN_CHAT_SUFFIX}, )
user_state = [{'agent': agent, 'memory': memory}]
return user_state
def change_input_type(flag):
if flag:
print('Using voice input.')
else:
print('Using text input.')
return gr.update(visible=not flag), gr.update(visible=flag)
def ramdom_image():
root_path = './assets/images'
img_list = os.listdir(root_path)
img_item = random.sample(img_list, 1)[0]
return Image.open(os.path.join(root_path, img_item))
def ramdom_video():
root_path = './assets/videos'
img_list = os.listdir(root_path)
img_item = random.sample(img_list, 1)[0]
return os.path.join(root_path, img_item)
def process_video_tab():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def process_image_tab():
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
def add_whiteboard():
# wb = np.ones((1080, 1920, 3), dtype=np.uint8) * 255
wb = np.ones((720, 1280, 3), dtype=np.uint8) * 255
return Image.fromarray(wb)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--port', type=int, default=7862)
parser.add_argument('-d', '--debug', action='store_true')
parser.add_argument('--https', action='store_true')
parser.add_argument('--load', type=str, default="HuskyVQA_cuda:0,ImageOCRRecognition_cuda:0,SegmentAnything_cuda:0")
args = parser.parse_args()
load_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.load.split(',')}
bot = ConversationBot(load_dict=load_dict)
# bot.init_agent()
with gr.Blocks(theme=Seafoam(), css=css) as demo:
state = gr.State([])
# user_state is dict. Keys: [agent, memory, image_path, video_path, seg_mask, image_caption, OCR_res, ...]
user_state = gr.State([])
gr.HTML(
"""
<div align='center'> <img src='/file=./assets/gvlab_logo.png' style='height:70px'/> </div>
<p align="center"><a href="https://github.com/OpenGVLab/InternGPT"><b>GitHub</b></a> <a href="https://arxiv.org/pdf/2305.05662.pdf"><b>ArXiv</b></a></p>
""")
with gr.Row(visible=True, elem_id='login') as login:
with gr.Column(scale=0.6, min_width=0) :
openai_api_key_text = gr.Textbox(
placeholder="Input openAI API key",
show_label=False,
label="OpenAI API Key",
lines=1,
type="password").style(container=False)
with gr.Column(scale=0.4, min_width=0):
key_submit_button = gr.Button(value="Please log in with your OpenAI API Key", interactive=True, variant='primary').style(container=False)
with gr.Row(visible=False) as user_interface:
with gr.Column(scale=0.5, elem_id="text_input") as chat_part:
chatbot = gr.Chatbot(elem_id="chatbot", label="InternGPT").style(height=360)
with gr.Row(visible=True) as input_row:
with gr.Column(scale=0.8, min_width=0) as text_col:
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(
container=False)
audio_input = gr.Audio(source="microphone", type="filepath", visible=False)
with gr.Column(scale=0.2, min_width=20):
# clear = gr.Button("Clear")
send_btn = gr.Button("📤 Send", variant="primary", visible=True)
with gr.Column(elem_id="visual_input", scale=0.5) as img_part:
with gr.Row(visible=True):
with gr.Column(scale=0.3, min_width=0):
audio_switch = gr.Checkbox(label="Voice Assistant", elem_id='audio_switch', info=None)
with gr.Column(scale=0.3, min_width=0):
whiteboard_mode = gr.Button("⬜️ Whiteboard", variant="primary", visible=True)
# whiteboard_mode = gr.Checkbox(label="Whiteboard", elem_id='whiteboard', info=None)
with gr.Column(scale=0.4, min_width=0, visible=True)as img_example:
add_img_example = gr.Button("🖼️ Give an Example", variant="primary")
with gr.Column(scale=0.4, min_width=0, visible=False) as vid_example:
add_vid_example = gr.Button("🖼️ Give an Example", variant="primary")
with gr.Tab("Image", elem_id='image_tab') as img_tab:
click_img = ImageSketcher(type="pil", interactive=True, brush_radius=15, elem_id="image_upload").style(height=360)
with gr.Row() as vis_btn:
with gr.Column(scale=0.25, min_width=0):
process_seg_btn = gr.Button(value="👆 Pick", variant="primary", elem_id="process_seg_btn")
with gr.Column(scale=0.25, min_width=0):
process_ocr_btn = gr.Button(value="🔍 OCR", variant="primary", elem_id="process_ocr_btn")
with gr.Column(scale=0.25, min_width=0):
process_save_btn = gr.Button(value="📁 Save", variant="primary", elem_id="process_save_btn")
with gr.Column(scale=0.25, min_width=0):
clear_btn = gr.Button(value="🗑️ Clear All", elem_id="clear_btn")
with gr.Tab("Video", elem_id='video_tab') as video_tab:
video_input = gr.Video(interactive=True, include_audio=True, elem_id="video_upload").style(height=360)
login_func = partial(login_with_key, bot, args.debug)
openai_api_key_text.submit(login_func, [openai_api_key_text], [user_interface, openai_api_key_text, key_submit_button, user_state])
key_submit_button.click(login_func, [openai_api_key_text, ], [user_interface, openai_api_key_text, key_submit_button, user_state])
txt.submit(
lambda: gr.update(visible=False), [], [send_btn]).then(
lambda: gr.update(visible=False), [], [txt]).then(
bot.run_text, [txt, state, user_state], [chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [send_btn]
).then(lambda: "", None, [txt, ]).then(
lambda: gr.update(visible=True), [], [txt])
# send_audio_btn.click(bot.run_audio, [audio_input, state], [chatbot, state])
send_btn.click(
lambda: gr.update(visible=False), [], [send_btn]).then(
lambda: gr.update(visible=False), [], [txt]).then(
bot.run_task, [audio_switch, txt, audio_input, state, user_state], [chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [send_btn]).then(
lambda: "", None, [txt, ]).then(
lambda: gr.update(visible=True), [], [txt]
)
audio_switch.change(change_input_type, [audio_switch, ], [txt, audio_input])
# add_img_example.click(ramdom_image, [], [click_img,]).then(
# bot.upload_image, [click_img, state, user_state], [chatbot, state, user_state])
add_img_example.click(ramdom_image, [], [click_img,]).then(
lambda: gr.update(visible=False), [], [send_btn]).then(
lambda: gr.update(visible=False), [], [txt]).then(
lambda: gr.update(visible=False), [], [vis_btn]).then(
bot.upload_image, [click_img, state, user_state],
[chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [send_btn]).then(
lambda: gr.update(visible=True), [], [txt]).then(
lambda: gr.update(visible=True), [], [vis_btn])
# add_vid_example.click(ramdom_video, [], [video_input,]).then(
# bot.upload_video, [video_input, state, user_state], [chatbot, state, user_state])
add_vid_example.click(ramdom_video, [], [video_input,]).then(
lambda: gr.update(visible=False), [], [send_btn]).then(
lambda: gr.update(visible=False), [], [txt]).then(
lambda: gr.update(visible=False), [], [vis_btn]).then(
bot.upload_video, [video_input, state, user_state],
[chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [send_btn]).then(
lambda: gr.update(visible=True), [], [txt]).then(
lambda: gr.update(visible=True), [], [vis_btn])
whiteboard_mode.click(add_whiteboard, [], [click_img, ])
# click_img.upload(bot.upload_image, [click_img, state, txt], [chatbot, state, txt])
click_img.upload(lambda: gr.update(visible=False), [], [send_btn]).then(
lambda: gr.update(visible=False), [], [txt]).then(
lambda: gr.update(visible=False), [], [vis_btn]).then(
bot.upload_image, [click_img, state, user_state],
[chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [send_btn]).then(
lambda: gr.update(visible=True), [], [txt]).then(
lambda: gr.update(visible=True), [], [vis_btn])
process_ocr_btn.click(
lambda: gr.update(visible=False), [], [vis_btn]).then(
bot.process_ocr, [click_img, state, user_state], [click_img, chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [vis_btn]
)
# process_seg_btn.click(bot.process_seg, [click_img, state], [chatbot, state, click_img])
process_seg_btn.click(
lambda: gr.update(visible=False), [], [vis_btn]).then(
bot.process_seg, [click_img, state, user_state], [click_img, chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [vis_btn]
)
# process_save_btn.click(bot.process_save, [click_img, state], [chatbot, state, click_img])
process_save_btn.click(
lambda: gr.update(visible=False), [], [vis_btn]).then(
bot.process_save, [click_img, state, user_state], [click_img, chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [vis_btn]
)
video_tab.select(process_video_tab, [], [whiteboard_mode, img_example, vid_example])
img_tab.select(process_image_tab, [], [whiteboard_mode, img_example, vid_example])
# clear_img_btn.click(bot.reset, [], [click_img])
clear_func = partial(bot.clear_user_state, True)
clear_btn.click(lambda: None, [], [click_img, ]).then(
lambda: [], None, state).then(
clear_func, [user_state, ], [user_state, ]).then(
lambda: None, None, chatbot
).then(lambda: '', None, [txt, ])
# click_img.upload(bot.reset, None, None)
# video_input.upload(bot.upload_video, [video_input, state, user_state], [chatbot, state, user_state])
video_input.upload(lambda: gr.update(visible=False), [], [send_btn]).then(
lambda: gr.update(visible=False), [], [txt]).then(
bot.upload_video, [video_input, state, user_state],
[chatbot, state, user_state]).then(
lambda: gr.update(visible=True), [], [send_btn]).then(
lambda: gr.update(visible=True), [], [txt])
clear_func = partial(bot.clear_user_state, False)
video_input.clear(clear_func, [user_state, ], [user_state, ])
# (More detailed instructions can be found in <a href="https://www.shailab.org.cn">here</a>:</p>
gr.HTML(
"""
<body>
<p style="font-family:verdana;color:#FF0000";>Tips!!! (More detailed instructions are coming soon): </p>
</body>
"""
)
gr.Markdown(
'''
After uploading the image, you can have a **multi-modal dialogue** by sending messages like: `what is it in the image?` or `what is the background color of image?`.
You also can interactively operate, edit or generate the image as follows:
- You can click the image and press the button `Pick` to **visualize the segmented region** or press the button `OCR` to **recognize the words** at chosen position;
- To **remove the masked reigon** in the image, you can send the message like: `remove the maked region`;
- To **replace the masked reigon** in the image, you can send the message like: `replace the maked region with {your prompt}`;
- To **generate a new image**, you can send the message like: `generate a new image based on its segmentation decribing {your prompt}`
- To **create a new image by your scribble**, you can press button `Whiteboard` and drawing in the below board. After drawing, you need to press the button `Save` and send the message like: `generate a new image based on this scribble decribing {your prompt}`.
'''
)
gr.HTML(
"""
<body>
<p style="font-family:verdana;color:#11AA00";>More features is coming soon. Hope you have fun with our demo!</p>
</body>
"""
)
if args.https:
demo.queue().launch(server_name="0.0.0.0", ssl_certfile="./certificate/cert.pem", ssl_keyfile="./certificate/key.pem", ssl_verify=False, server_port=args.port)
else:
demo.queue().launch(server_name="0.0.0.0", server_port=args.port)
|