Spaces:
Runtime error
Runtime error
File size: 14,083 Bytes
0dcddb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import gradio as gr
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
import torch
import unicodedata
import re
# Default variables
default_max_new_tokens = 100
default_temperature = 1.0
default_top_k = 10
default_top_p = 0.99
default_repetition_penalty = 1.0
model_name = "OpenLLM-France/Claire-7B-0.1"
print("Loading model...")
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True,
)
print("Optimizing model...")
import optimum
from optimum.bettertransformer import BetterTransformer
model = BetterTransformer.transform(model)
print("Setup chat...")
eos_token_id = tokenizer.eos_token_id
newspk_token_id = tokenizer.encode("[")
assert len(newspk_token_id) == 1
newspk_token_id = newspk_token_id[0]
# Class to encapsulate the Claire chatbot
class ClaireChatBot:
def __init__(
self,
# Chat will display...
user_name="VOUS:",
bot_name="CHATBOT:",
other_name_regex_in=r"AUTRE (\d+):",
other_name_regex_out=r"AUTRE \1:",
# but Claire was trained on...
user_internal_tag="[Intervenant 1:]",
bot_internal_tag="[Intervenant 2:]",
other_internal_tag_regex_in=r"\[Intervenant (\d+):\]",
other_internal_tag_regex_out=r"\[Intervenant \1:\]",
):
self.user_name = user_name
self.bot_name = bot_name
self.other_name_regex_in = other_name_regex_in
self.other_name_regex_out = other_name_regex_out
self.user_internal_tag = user_internal_tag
self.bot_internal_tag = bot_internal_tag
self.other_internal_tag_regex_in = other_internal_tag_regex_in
self.other_internal_tag_regex_out = other_internal_tag_regex_out
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.has_started_bracket = False
self.history = ""
self.history_raw = ""
self.reinject_history = False
self.reshow_history = False
def predict(
self,
user_message,
bot_message_start="",
conversation_history="",
generate_several_turns=False,
max_new_tokens=default_max_new_tokens,
temperature=default_temperature,
top_k=default_top_k,
top_p=default_top_p,
repetition_penalty=default_repetition_penalty,
):
user_message = claire_text_preproc_message(user_message)
bot_message_start = claire_text_preproc_message(bot_message_start)
if conversation_history:
# Format conversation history
for spk_in, spk_out in [
(self.user_name, self.user_internal_tag),
(self.bot_name, self.bot_internal_tag),
]:
conversation_history = conversation_history.replace(spk_in, spk_out)
conversation_history = re.sub(self.other_name_regex_in, self.other_internal_tag_regex_out, conversation_history)
conversation_history = claire_text_preproc_conversation(conversation_history)
conversation_history = conversation_history.rstrip() + "\n"
else:
conversation_history = self.history_raw
# (Only relevant if self.reinject_history is True)
user_internal_tag = self.user_internal_tag
if self.has_started_bracket:
user_internal_tag = user_internal_tag[1:]
# Combine the user and bot messages into a conversation
conversation = f"{conversation_history}{user_internal_tag} {user_message}\n{self.bot_internal_tag} {bot_message_start if bot_message_start else ''}".strip()
# Encode the conversation using the tokenizer
input_ids = tokenizer.encode(
conversation, return_tensors="pt", add_special_tokens=False
)
input_ids = input_ids.to(self.device)
# Generate a response using Claire
response = model.generate(
input_ids=input_ids,
use_cache=False,
early_stopping=False,
temperature=temperature,
do_sample=True,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
pad_token_id=eos_token_id,
eos_token_id=eos_token_id if generate_several_turns else newspk_token_id,
)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
# Remove last unfinished speech turn/sentence/phrase
line_breaks = [u.span(0)[0] for u in re.finditer("\n", response_text)]
remove_last_sentence = True
if generate_several_turns:
if len(line_breaks) >= 2:
response_text = response_text[: line_breaks[-1]]
line_breaks.pop(-1)
remove_last_sentence = False
if remove_last_sentence and len(line_breaks) == 1:
sentence_ends = [
u.span(0)[0] for u in re.finditer(r"[\.!?]", response_text)
]
sentence_ends = [p for p in sentence_ends if p > line_breaks[-1]]
if sentence_ends:
response_text = response_text[: sentence_ends[-1] + 1]
else:
phrase_ends = [
u.span(0)[0] for u in re.finditer(r"[,;]", response_text)
]
phrase_ends = [p for p in phrase_ends if p > line_breaks[-1]]
if phrase_ends:
response_text = response_text[: phrase_ends[-1] + 1]
ended_with_bracket = response_text.endswith("[")
if self.reinject_history:
self.history_raw = response_text
self.has_started_bracket = ended_with_bracket
if ended_with_bracket:
response_text = response_text[:-1]
for spk_in, spk_out in [
(self.user_internal_tag, self.user_name),
(self.user_internal_tag[1:], self.user_name), # Starting bracket may be missing
(self.bot_internal_tag, self.bot_name),
]:
response_text = response_text.replace(spk_in, spk_out)
response_text = re.sub(self.other_internal_tag_regex_in, self.other_name_regex_out, response_text)
if self.reshow_history:
previous_history = self.history
self.history = previous_history + response_text + "\n"
else:
previous_history = ""
return previous_history + response_text
def claire_text_preproc_conversation(text):
text = format_special_characters(text)
text = collapse_whitespaces_conversations(text)
return text
def claire_text_preproc_message(text):
text = format_special_characters(text)
text = collapse_whitespaces_message(text)
text = replace_brackets(text)
return text
def collapse_whitespaces_conversations(text):
text = re.sub(r"\n+", "\n", text)
text = re.sub(r"[ \t]+", " ", text)
text = re.sub(r"\n ", "\n", text)
text = re.sub(r" ([\.,])", r"\1", text)
return text.lstrip().rstrip(" ")
def collapse_whitespaces_message(text):
text = re.sub(r"\s+", " ", text)
text = re.sub(r" ([\.,])", r"\1", text)
return text.lstrip().rstrip(" ")
def replace_brackets(text):
text = re.sub(r"[\[\{]", "(", text)
text = re.sub(r"[\]\}]", ")", text)
return text
def format_special_characters(text):
text = unicodedata.normalize("NFC", text)
for before, after in [
("…", "..."),
(r"[«“][^\S\r\n]*", '"'),
(r"[^\S\r\n]*[»”″„]", '"'),
(r"(``|'')", '"'),
(r"[’‘‛ʿ]", "'"),
("‚", ","),
(r"–", "-"),
("[ ]", " "), # unbreakable spaces
(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F-\x9F]", ""), # non-printable characters
# ("·", "."),
(r"ᵉʳ", "er"),
(r"ᵉ", "e"),
]:
text = re.sub(before, after, text)
return text
# Create the Claire chatbot instance
chatbot = ClaireChatBot()
# Define the Gradio interface
title = "Démo de conversation avec Claire"
description = "Simulation de conversations en Français avec [Claire](https://huggingface.co/OpenLLM-France/Claire-7B-0.1), sans recherche de vérité, et avec potentiellement un peu d'humour."
default_parameters = [
default_temperature,
default_top_k,
default_top_p,
default_repetition_penalty,
]
examples = [
[
"Nous allons commencer cette interview avec une question un peu classique. Quel est votre sport préféré?", # user_message
"", # bot_message_start
"", # conversation_history
True, # generate_several_turns
200, # max_new_tokens
*default_parameters,
],
[
"Que vas-tu nous cuisiner aujourd'hui?", # user_message
"Alors, nous allons voir la recette de", # bot_message_start
"VOUS: Bonjour Claire.\nCHATBOT: Bonjour Dominique.", # conversation_history
False, # generate_several_turns
default_max_new_tokens, # max_new_tokens
*default_parameters,
],
]
# # Test
# chatbot.predict(*examples[0])
inputs = [
gr.Textbox(
"",
label="Prompt",
info="Tapez ce que vous voulez dire au ChatBot",
type="text",
lines=2,
),
gr.Textbox(
"",
label="Début de réponse",
info="Vous pouvez taper ici ce que commence à vous répondre le ChatBot",
type="text",
),
gr.Textbox(
"",
label="Historique",
info="Vous pouvez copier-coller (et modifier?) ici votre historique de conversation, pour continuer cette conversation",
type="text",
lines=3,
),
gr.Checkbox(
False,
label="Plus qu'un tour de parole",
info="Générer aussi comment pourrait continuer la conversation (plusieurs tours de parole incluant le vôtre)",
),
gr.Slider(
label="Longueur max",
info="Longueur maximale du texte généré (en nombre de 'tokens' ~ mots et ponctuations)",
value=default_max_new_tokens,
minimum=25,
maximum=1000,
step=25,
interactive=True,
),
gr.Slider(
label="Température",
info="Une valeur élevée augmente la diversité du texte généré, mais peut aussi produire des résultats incohérents",
value=default_temperature,
minimum=0.1,
maximum=1.9,
step=0.1,
interactive=True,
),
gr.Slider(
label="Top-k",
info="Une valeur élevée permet d'explorer plus d'alternatives, mais augmente les temps de calcul",
value=default_top_k,
minimum=1,
maximum=50,
step=1,
interactive=True,
),
gr.Slider(
label="Top-p",
info="Une valeur élevée permet d'explorer des alternatives moins probables",
value=default_top_p,
minimum=0.9,
maximum=1.0,
step=0.01,
interactive=True,
),
gr.Slider(
label="Pénalité de répétition",
info="Pénalisation des répétitions",
value=default_repetition_penalty,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
),
]
theme = gr.themes.Monochrome(
secondary_hue="emerald",
neutral_hue="teal",
).set(
body_background_fill="*primary_950",
body_background_fill_dark="*secondary_950",
body_text_color="*primary_50",
body_text_color_dark="*secondary_100",
body_text_color_subdued="*primary_300",
body_text_color_subdued_dark="*primary_300",
background_fill_primary="*primary_600",
background_fill_primary_dark="*primary_400",
background_fill_secondary="*primary_950",
background_fill_secondary_dark="*primary_950",
border_color_accent="*secondary_600",
border_color_primary="*secondary_50",
border_color_primary_dark="*secondary_50",
color_accent="*secondary_50",
color_accent_soft="*primary_500",
color_accent_soft_dark="*primary_500",
link_text_color="*secondary_950",
link_text_color_dark="*primary_50",
link_text_color_active="*primary_50",
link_text_color_active_dark="*primary_50",
link_text_color_hover="*primary_50",
link_text_color_hover_dark="*primary_50",
link_text_color_visited="*primary_50",
block_background_fill="*primary_950",
block_background_fill_dark="*primary_950",
block_border_color="*secondary_500",
block_border_color_dark="*secondary_500",
block_info_text_color="*primary_50",
block_info_text_color_dark="*primary_50",
block_label_background_fill="*primary_950",
block_label_background_fill_dark="*secondary_950",
block_label_border_color="*secondary_500",
block_label_border_color_dark="*secondary_500",
block_label_text_color="*secondary_500",
block_label_text_color_dark="*secondary_500",
block_title_background_fill="*primary_950",
panel_background_fill="*primary_950",
panel_border_color="*primary_950",
checkbox_background_color="*primary_950",
checkbox_background_color_dark="*primary_950",
checkbox_background_color_focus="*primary_950",
checkbox_border_color="*secondary_500",
input_background_fill="*primary_800",
input_background_fill_focus="*primary_950",
input_background_fill_hover="*secondary_950",
input_placeholder_color="*secondary_950",
slider_color="*primary_950",
slider_color_dark="*primary_950",
table_even_background_fill="*primary_800",
table_odd_background_fill="*primary_600",
button_primary_background_fill="*primary_800",
button_primary_background_fill_dark="*primary_800",
)
iface = gr.Interface(
fn=chatbot.predict,
title=title,
description=description,
examples=examples,
inputs=inputs,
outputs="text",
theme=theme,
)
print("Launching chat...")
# Launch the Gradio interface for the model
iface.launch(share=True)
|