Spaces:
Runtime error
Runtime error
File size: 13,650 Bytes
0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 573e27c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 d2ac09c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 d2ac09c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c 0dcddb0 c78a91c d2ac09c c78a91c 0dcddb0 c78a91c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import gradio as gr
from threading import Thread
import transformers
import spaces
import torch
import unicodedata
import regex as re
# Model
model_name = "OpenLLM-France/Claire-7B-0.1"
# Title and description
title = "Conversation avec Claire"
description = """\
Simulation de conversation en Français avec [OpenLLM-France/Claire-7B](https://huggingface.co/OpenLLM-France/Claire-7B-0.1).
<strong>Claire n'est <u>pas</u> un assistant personnel</strong>, elle a tendance à comprendre et répondre un <b>langage parlé</b>, \
peut faire preuve d'humour, et <strong>ne vous dira <u>pas</u> (forcément) des vérités</strong>.
"""
# Default variables
default_max_new_tokens = 200
default_temperature = 1.0
default_repetition_penalty = 1.5
default_top_k = 10
default_top_p = 0.99
default_parameters = [
default_max_new_tokens,
default_temperature,
default_repetition_penalty,
default_top_k,
default_top_p,
]
# Examples
examples = [
[
"Bonjour Claire. Quel est votre sport préféré?", # user_message
False,
"", # bot_message_start
# "", # First name
*default_parameters,
],
[
"Bonjour. Je vous propose de faire un tour de table.", # user_message
True, # more than one turn
"", # bot_message_start
# "", # First name
*default_parameters,
],
[
"Que vas-tu nous cuisiner aujourd'hui?", # user_message
False,
"Alors, nous allons voir la recette", # bot_message_start
# "", # First name
*default_parameters,
],
]
# Override default gradio buttons
gradio_buttons = dict(
submit_btn=gr.Button("Envoyer"), # Sumbit
retry_btn=gr.Button("🔄 Générer une autre réponse"), # "🔄 Retry"
undo_btn=gr.Button("↩️ Annuler"), # "↩️ Undo"
clear_btn=gr.Button("🗑️ Effacer la conversation"), # "🗑️ Clear"
# stop_btn= None,
stop_btn=gr.Button("Arrêter"), # Stop
)
additional_inputs_name="Paramètres" # "Additional inputs"
textbox=gr.Textbox(
container=False,
show_label=False,
label="Message",
placeholder="Votre message (laissez vide pour que le Bot continue seul)...",
scale=7,
lines=2,
autofocus=False,
)
chatbot_label="Conversation" # Chatbot
additional_inputs = [
gr.Checkbox(
False,
label="Plus qu'un tour de parole",
info="Générer plusieurs tours de parole (et donc comment vous pourriez continuer la conversation)",
),
gr.Textbox(
"",
label="Début de réponse",
info="Vous pouvez taper ici ce que commence à vous répondre le Bot (pensez à actualiser entre chaque génération)",
type="text",
),
# gr.Textbox(
# "",
# label="Votre prénom",
# info="Prénom de vous en tant qu'interlocuteur (si vous vous nommez, le bot s'appellera Claire)",
# ),
gr.Slider(
label="Longueur max",
info="Longueur maximale du texte généré (en nombre de 'tokens' ~ mots et ponctuations)",
value=default_max_new_tokens,
minimum=25,
maximum=1000,
step=25,
interactive=True,
),
gr.Slider(
label="Température",
info="Une valeur élevée augmente la diversité du texte généré, mais peut aussi produire des résultats incohérents",
value=default_temperature,
minimum=0.1,
maximum=1.9,
step=0.1,
interactive=True,
),
gr.Slider(
label="Pénalité de répétition",
info="Pénalisation des répétitions",
value=default_repetition_penalty,
minimum=1.0,
maximum=1.95,
step=0.05,
interactive=True,
),
gr.Slider(
label="Top-k",
info="Une valeur élevée permet d'explorer plus d'alternatives",
value=default_top_k,
minimum=1,
maximum=50,
step=1,
interactive=True,
),
gr.Slider(
label="Top-p",
info="Une valeur élevée permet d'explorer plus d'alternatives",
value=default_top_p,
minimum=0.9,
maximum=1.0,
step=0.01,
interactive=True,
),
]
STREAMING = True
print("Loading model...")
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True,
)
print("Optimizing model...")
# import optimum
# from optimum.bettertransformer import BetterTransformer
# model = BetterTransformer.transform(model)
print("Setup chat...")
eos_token_id = tokenizer.eos_token_id
newspk_token_id = tokenizer.encode("[")
assert len(newspk_token_id) == 1
newspk_token_id = newspk_token_id[0]
tokenizer.add_special_tokens({"eos_token": "["})
user_internal_tag = "[Intervenant 1:]"
bot_internal_tag = "[Intervenant 2:]"
device = "cuda" if torch.cuda.is_available() else "cpu"
@spaces.GPU
def generate(
user_message,
conversation_history=[],
generate_several_turns=False,
bot_message_start="",
# user_surname="",
max_new_tokens=default_max_new_tokens,
temperature=default_temperature,
repetition_penalty=default_repetition_penalty,
top_k=default_top_k,
top_p=default_top_p,
user_surname="", # Experimental (TODO)
remove_unfinished_sentence=True,
):
user_message = claire_text_preproc_message(user_message)
bot_message_start = claire_text_preproc_message(bot_message_start)
if user_surname:
user_surname = capitalize(collapse_whitespaces(re.sub(r"[^\p{L}\-\.']", " ", user_surname))).strip()
if user_surname:
user_tag = f"[{user_surname}:]"
bot_tag = f"[Claire:]"
else:
user_tag = user_internal_tag
bot_tag = bot_internal_tag
if conversation_history:
conversation_history = "\n".join(
[
f"{user_tag} {claire_text_preproc_message(user)}\n{bot_tag} {claire_text_preproc_message(bot) if bot else ''}"
for user, bot in conversation_history
]
)
conversation_history = from_display_to_internal(conversation_history)
conversation_history = conversation_history.rstrip()
if conversation_history:
conversation_history += "\n"
else:
conversation_history = ""
if not bot_message_start:
bot_message_start = ""
# Combine the user and bot messages into a conversation
conversation = f"{conversation_history}{user_tag} {user_message}\n{bot_tag} {bot_message_start}".strip()
conversation = remove_empty_turns(conversation)
# Encode the conversation using the tokenizer
input_ids = tokenizer.encode(
conversation, return_tensors="pt", add_special_tokens=True
)
input_ids = input_ids.to(device)
skip_special_tokens = not generate_several_turns
if STREAMING:
streamer = transformers.TextIteratorStreamer(
tokenizer,
timeout=10.0,
skip_prompt=True,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=False,
)
else:
streamer = None
# Generation parameters
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
eos_token_id=eos_token_id if generate_several_turns else newspk_token_id,
pad_token_id=eos_token_id,
do_sample=True,
max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
num_beams=1,
# use_cache=False,
# early_stopping=False,
)
if STREAMING:
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
if bot_message_start.strip():
yield bot_message_start
for token in streamer:
# Ignore line breaks
if not generate_several_turns and re.match(r"\s*\n$", token):
continue
outputs.append(token)
text = bot_message_start + from_internal_to_display("".join(outputs))
yield text
else:
output_ids = model.generate(**generate_kwargs)
output_ids = output_ids[0][len(input_ids[0]) :]
text = tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens)
if bot_message_start.strip():
bot_message_start = bot_message_start.strip() + " "
text = bot_message_start + from_internal_to_display(text.rstrip("[").strip())
yield text
if generate_several_turns:
if remove_unfinished_sentence:
yield remove_last_unfinished_sentence(text)
else:
yield remove_last_unfinished_turn(text)[0]
def claire_text_preproc_message(text):
text = format_punctuations_for_french(text)
text = format_special_characters(text)
text = collapse_whitespaces(text)
text = replace_brackets(text)
return text
def collapse_whitespaces(text):
text = re.sub(r"\s+", " ", text)
text = re.sub(r" ([\.,])", r"\1", text)
return text.lstrip().rstrip(" ")
def replace_brackets(text):
text = re.sub(r"[\[\{]", "(", text)
text = re.sub(r"[\]\}]", ")", text)
return text
def format_punctuations_for_french(text):
for before, after in french_punctuation_rules:
text = re.sub(before, after, text)
return text
french_punctuation_rules = {
# Add a space before double punctuation marks
(r"([" + re.escape('?!:;') + r"])", r" \1"),
# Remove space before simple punctuation marks
(r"\s+([" + re.escape(',.') + r"])", r"\1"),
# Add space after punctuation marks
(r"([" + re.escape('?!:;,') + r"]+)([^ " + re.escape('?!:;,') + r"\d])", r"\1 \2"),
(r"([" + re.escape('.') + r"]+)([A-Z])", r"\1 \2"),
}
def format_special_characters(text):
text = unicodedata.normalize("NFC", text)
for before, after in [
("…", "..."),
(r"[«“][^\S\r\n]*", '"'),
(r"[^\S\r\n]*[»”″„]", '"'),
(r"(``|'')", '"'),
(r"[’‘‛ʿ]", "'"),
("‚", ","),
(r"–", "-"),
("[ ]", " "), # unbreakable spaces
(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F-\x9F]", ""), # non-printable characters
# ("·", "."),
(r"ᵉʳ", "er"),
(r"ᵉ", "e"),
]:
text = re.sub(before, after, text)
return text
user_name = "[Vous:]"
bot_name = "[Bot:]"
def from_internal_to_display(text):
for before, after in [
(user_internal_tag, user_name),
(bot_internal_tag, bot_name),
]:
text = text.replace(before, after)
return text
def from_display_to_internal(text):
for before, after in [
(user_name, user_internal_tag),
(bot_name, bot_internal_tag),
]:
text = text.replace(before, after)
return text
def remove_last_unfinished_sentence(text):
text, removed_turn = remove_last_unfinished_turn(text)
if removed_turn:
return text
line_breaks = [u.span(0)[0] for u in re.finditer("\n", text)]
remove_last_sentence = True
if len(line_breaks) >= 1 and len(text[line_breaks[-1]:].split("]")[-1]) < 15:
text = text[: line_breaks[-1]]
line_breaks.pop(-1)
remove_last_sentence = False
if remove_last_sentence and len(line_breaks) >= 1:
sentence_ends = [u.span(0)[0] for u in re.finditer(r"[\.!?]", text)]
sentence_ends = [p for p in sentence_ends if p > line_breaks[-1]]
if sentence_ends:
text = text[: sentence_ends[-1] + 1]
else:
phrase_ends = [u.span(0)[0] for u in re.finditer(r"[,;]", text)]
phrase_ends = [p for p in phrase_ends if p > line_breaks[-1]]
if phrase_ends:
text = text[: phrase_ends[-1] + 1]
return text
def remove_last_unfinished_turn(text):
starts = [u.span(0)[0] for u in re.finditer(r"\[", text)]
did_it = False
if starts and "]" not in text[starts[-1] :]:
text = text[: starts[-1]]
did_it = True
return text.rstrip(), did_it
def remove_empty_turns(text):
while re.search(_empty_turn, text):
# Remove empty turns
text = re.sub(_empty_turn, r"\1", text)
# Remove same speaker speaking twice
text = re.sub(_repeated_turn, r"\1 \2", text)
return text
_speaker_regex = r"\[[^\]]+:\]"
_empty_turn = re.compile(_speaker_regex + r"[^\p{L}]*" + "(" + _speaker_regex + ")")
_repeated_turn = re.compile(r"(" + _speaker_regex + r") ([^\[]*)\s\1")
def capitalize(text):
# michel JR claude-marie -> Michel JR Claude-Marie
words = text.split(" ")
words = [w.capitalize() if (not w.isupper() or len(w)>2) else w for w in words]
for i, w in enumerate(words):
for sep in "-", "'":
if sep in w:
words[i] = sep.join([x.capitalize() if not x.isupper() else x for x in w.split(sep)])
return " ".join(words)
# # Test
# list(generate(*(examples[0][:1] + [[]] + examples[0][1:])))
chat_interface = gr.ChatInterface(
fn=generate,
title=title,
description=description,
chatbot=gr.Chatbot(label=chatbot_label),
textbox=textbox,
examples=examples,
additional_inputs=additional_inputs,
additional_inputs_accordion=gr.Accordion(
label="Paramètres",
open=True,
),
autofocus=False,
**gradio_buttons,
)
if __name__ == "__main__":
print("Launching chat...")
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
demo.queue(max_size=20).launch()
|