File size: 13,650 Bytes
0dcddb0
c78a91c
0dcddb0
c78a91c
0dcddb0
 
c78a91c
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
 
c78a91c
0dcddb0
c78a91c
0dcddb0
 
 
c78a91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
 
 
 
 
 
 
 
 
 
 
 
 
573e27c
 
 
0dcddb0
 
 
 
 
 
 
 
c78a91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
c78a91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
c78a91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
c78a91c
0dcddb0
 
 
d2ac09c
0dcddb0
c78a91c
0dcddb0
 
 
 
c78a91c
0dcddb0
 
 
 
 
 
 
 
 
 
d2ac09c
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c78a91c
 
0dcddb0
 
c78a91c
 
 
 
 
 
 
0dcddb0
 
c78a91c
 
 
 
 
 
 
0dcddb0
 
c78a91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
c78a91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dcddb0
 
c78a91c
 
0dcddb0
c78a91c
d2ac09c
 
 
 
c78a91c
 
0dcddb0
 
c78a91c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import gradio as gr
from threading import Thread
import transformers
import spaces
import torch
import unicodedata
import regex as re

# Model
model_name = "OpenLLM-France/Claire-7B-0.1"

# Title and description
title = "Conversation avec Claire"
description = """\
Simulation de conversation en Français avec [OpenLLM-France/Claire-7B](https://huggingface.co/OpenLLM-France/Claire-7B-0.1).
<strong>Claire n'est <u>pas</u> un assistant personnel</strong>, elle a tendance à comprendre et répondre un <b>langage parlé</b>, \
peut faire preuve d'humour, et <strong>ne vous dira <u>pas</u> (forcément) des vérités</strong>.
"""

# Default variables
default_max_new_tokens = 200
default_temperature = 1.0
default_repetition_penalty = 1.5
default_top_k = 10
default_top_p = 0.99

default_parameters = [
    default_max_new_tokens,
    default_temperature,
    default_repetition_penalty,
    default_top_k,
    default_top_p,
]

# Examples
examples = [
    [
        "Bonjour Claire. Quel est votre sport préféré?",  # user_message
        False,
        "",  # bot_message_start
        # "",  # First name
        *default_parameters,
    ],
    [
        "Bonjour. Je vous propose de faire un tour de table.",  # user_message
        True, # more than one turn
        "",  # bot_message_start
        # "",  # First name
        *default_parameters,
    ],
    [
        "Que vas-tu nous cuisiner aujourd'hui?",  # user_message
        False,
        "Alors, nous allons voir la recette",  # bot_message_start
        # "", # First name
        *default_parameters,
    ],
]

# Override default gradio buttons
gradio_buttons = dict(
    submit_btn=gr.Button("Envoyer"), # Sumbit
    retry_btn=gr.Button("🔄  Générer une autre réponse"), # "🔄  Retry"
    undo_btn=gr.Button("↩️ Annuler"), # "↩️ Undo"
    clear_btn=gr.Button("🗑️  Effacer la conversation"), # "🗑️  Clear"
    # stop_btn= None,
    stop_btn=gr.Button("Arrêter"), # Stop
)
additional_inputs_name="Paramètres" # "Additional inputs"
textbox=gr.Textbox(
    container=False,
    show_label=False,
    label="Message",
    placeholder="Votre message (laissez vide pour que le Bot continue seul)...",
    scale=7,
    lines=2,
    autofocus=False,
)
chatbot_label="Conversation" # Chatbot


additional_inputs = [
    gr.Checkbox(
        False,
        label="Plus qu'un tour de parole",
        info="Générer plusieurs tours de parole (et donc comment vous pourriez continuer la conversation)",
    ),
    gr.Textbox(
        "",
        label="Début de réponse",
        info="Vous pouvez taper ici ce que commence à vous répondre le Bot (pensez à actualiser entre chaque génération)",
        type="text",
    ),
    # gr.Textbox(
    #     "",
    #     label="Votre prénom",
    #     info="Prénom de vous en tant qu'interlocuteur (si vous vous nommez, le bot s'appellera Claire)",
    # ),
    gr.Slider(
        label="Longueur max",
        info="Longueur maximale du texte généré (en nombre de 'tokens' ~ mots et ponctuations)",
        value=default_max_new_tokens,
        minimum=25,
        maximum=1000,
        step=25,
        interactive=True,
    ),
    gr.Slider(
        label="Température",
        info="Une valeur élevée augmente la diversité du texte généré, mais peut aussi produire des résultats incohérents",
        value=default_temperature,
        minimum=0.1,
        maximum=1.9,
        step=0.1,
        interactive=True,
    ),
    gr.Slider(
        label="Pénalité de répétition",
        info="Pénalisation des répétitions",
        value=default_repetition_penalty,
        minimum=1.0,
        maximum=1.95,
        step=0.05,
        interactive=True,
    ),
    gr.Slider(
        label="Top-k",
        info="Une valeur élevée permet d'explorer plus d'alternatives",
        value=default_top_k,
        minimum=1,
        maximum=50,
        step=1,
        interactive=True,
    ),
    gr.Slider(
        label="Top-p",
        info="Une valeur élevée permet d'explorer plus d'alternatives",
        value=default_top_p,
        minimum=0.9,
        maximum=1.0,
        step=0.01,
        interactive=True,
    ),
]

STREAMING = True

print("Loading model...")

tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    load_in_4bit=True,
)

print("Optimizing model...")

# import optimum
# from optimum.bettertransformer import BetterTransformer
# model = BetterTransformer.transform(model)

print("Setup chat...")

eos_token_id = tokenizer.eos_token_id
newspk_token_id = tokenizer.encode("[")
assert len(newspk_token_id) == 1
newspk_token_id = newspk_token_id[0]

tokenizer.add_special_tokens({"eos_token": "["})

user_internal_tag = "[Intervenant 1:]"
bot_internal_tag = "[Intervenant 2:]"
device = "cuda" if torch.cuda.is_available() else "cpu"


@spaces.GPU
def generate(
    user_message,
    conversation_history=[],
    generate_several_turns=False,
    bot_message_start="",
    # user_surname="",
    max_new_tokens=default_max_new_tokens,
    temperature=default_temperature,
    repetition_penalty=default_repetition_penalty,
    top_k=default_top_k,
    top_p=default_top_p,
    user_surname="", # Experimental (TODO)
    remove_unfinished_sentence=True,
):
    user_message = claire_text_preproc_message(user_message)
    bot_message_start = claire_text_preproc_message(bot_message_start)

    if user_surname:
        user_surname = capitalize(collapse_whitespaces(re.sub(r"[^\p{L}\-\.']", " ", user_surname))).strip()
    if user_surname:
        user_tag = f"[{user_surname}:]"
        bot_tag = f"[Claire:]"
    else:
        user_tag = user_internal_tag
        bot_tag = bot_internal_tag

    if conversation_history:
        conversation_history = "\n".join(
            [
                f"{user_tag} {claire_text_preproc_message(user)}\n{bot_tag} {claire_text_preproc_message(bot) if bot else ''}"
                for user, bot in conversation_history
            ]
        )
        conversation_history = from_display_to_internal(conversation_history)
        conversation_history = conversation_history.rstrip()
        if conversation_history:
            conversation_history += "\n"
    else:
        conversation_history = ""
    if not bot_message_start:
        bot_message_start = ""

    # Combine the user and bot messages into a conversation
    conversation = f"{conversation_history}{user_tag} {user_message}\n{bot_tag} {bot_message_start}".strip()
    conversation = remove_empty_turns(conversation)

    # Encode the conversation using the tokenizer
    input_ids = tokenizer.encode(
        conversation, return_tensors="pt", add_special_tokens=True
    )
    input_ids = input_ids.to(device)

    skip_special_tokens = not generate_several_turns

    if STREAMING:
        streamer = transformers.TextIteratorStreamer(
            tokenizer,
            timeout=10.0,
            skip_prompt=True,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=False,
        )
    else:
        streamer = None

    # Generation parameters
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        eos_token_id=eos_token_id if generate_several_turns else newspk_token_id,
        pad_token_id=eos_token_id,
        do_sample=True,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        top_k=top_k,
        top_p=top_p,
        num_beams=1,
        # use_cache=False,
        # early_stopping=False,
    )
    if STREAMING:
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()

        outputs = []
        if bot_message_start.strip():
            yield bot_message_start
        for token in streamer:
            # Ignore line breaks
            if not generate_several_turns and re.match(r"\s*\n$", token):
                continue
            outputs.append(token)
            text = bot_message_start + from_internal_to_display("".join(outputs))
            yield text
    else:
        output_ids = model.generate(**generate_kwargs)
        output_ids = output_ids[0][len(input_ids[0]) :]
        text = tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens)
        if bot_message_start.strip():
            bot_message_start = bot_message_start.strip() + " "

        text = bot_message_start + from_internal_to_display(text.rstrip("[").strip())
        yield text

    if generate_several_turns:
        if remove_unfinished_sentence:
            yield remove_last_unfinished_sentence(text)
        else:
            yield remove_last_unfinished_turn(text)[0]


def claire_text_preproc_message(text):
    text = format_punctuations_for_french(text)
    text = format_special_characters(text)
    text = collapse_whitespaces(text)
    text = replace_brackets(text)
    return text


def collapse_whitespaces(text):
    text = re.sub(r"\s+", " ", text)
    text = re.sub(r" ([\.,])", r"\1", text)
    return text.lstrip().rstrip(" ")


def replace_brackets(text):
    text = re.sub(r"[\[\{]", "(", text)
    text = re.sub(r"[\]\}]", ")", text)
    return text

def format_punctuations_for_french(text):
    for before, after in french_punctuation_rules:
        text = re.sub(before, after, text)
    return text

french_punctuation_rules = {
    # Add a space before double punctuation marks
    (r"([" + re.escape('?!:;') + r"])", r" \1"),
    # Remove space before simple punctuation marks
    (r"\s+([" + re.escape(',.') + r"])", r"\1"),
    # Add space after punctuation marks
    (r"([" + re.escape('?!:;,') + r"]+)([^ " + re.escape('?!:;,') + r"\d])", r"\1 \2"),
    (r"([" + re.escape('.') + r"]+)([A-Z])", r"\1 \2"),
}

def format_special_characters(text):
    text = unicodedata.normalize("NFC", text)
    for before, after in [
        ("…", "..."),
        (r"[«“][^\S\r\n]*", '"'),
        (r"[^\S\r\n]*[»”″„]", '"'),
        (r"(``|'')", '"'),
        (r"[’‘‛ʿ]", "'"),
        ("‚", ","),
        (r"–", "-"),
        ("[  ]", " "),  # unbreakable spaces
        (r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F-\x9F]", ""),  # non-printable characters
        # ("·", "."),
        (r"ᵉʳ", "er"),
        (r"ᵉ", "e"),
    ]:
        text = re.sub(before, after, text)

    return text


user_name = "[Vous:]"
bot_name = "[Bot:]"


def from_internal_to_display(text):
    for before, after in [
        (user_internal_tag, user_name),
        (bot_internal_tag, bot_name),
    ]:
        text = text.replace(before, after)
    return text


def from_display_to_internal(text):
    for before, after in [
        (user_name, user_internal_tag),
        (bot_name, bot_internal_tag),
    ]:
        text = text.replace(before, after)
    return text


def remove_last_unfinished_sentence(text):
    text, removed_turn = remove_last_unfinished_turn(text)
    if removed_turn:
        return text
    line_breaks = [u.span(0)[0] for u in re.finditer("\n", text)]
    remove_last_sentence = True
    if len(line_breaks) >= 1 and len(text[line_breaks[-1]:].split("]")[-1]) < 15:
        text = text[: line_breaks[-1]]
        line_breaks.pop(-1)
        remove_last_sentence = False
    if remove_last_sentence and len(line_breaks) >= 1:
        sentence_ends = [u.span(0)[0] for u in re.finditer(r"[\.!?]", text)]
        sentence_ends = [p for p in sentence_ends if p > line_breaks[-1]]
        if sentence_ends:
            text = text[: sentence_ends[-1] + 1]
        else:
            phrase_ends = [u.span(0)[0] for u in re.finditer(r"[,;]", text)]
            phrase_ends = [p for p in phrase_ends if p > line_breaks[-1]]
            if phrase_ends:
                text = text[: phrase_ends[-1] + 1]
    return text


def remove_last_unfinished_turn(text):
    starts = [u.span(0)[0] for u in re.finditer(r"\[", text)]
    did_it = False
    if starts and "]" not in text[starts[-1] :]:
        text = text[: starts[-1]]
        did_it = True
    return text.rstrip(), did_it


def remove_empty_turns(text):
    while re.search(_empty_turn, text):
        # Remove empty turns
        text = re.sub(_empty_turn, r"\1", text)
        # Remove same speaker speaking twice
        text = re.sub(_repeated_turn, r"\1 \2", text)
    return text

_speaker_regex = r"\[[^\]]+:\]"
_empty_turn = re.compile(_speaker_regex + r"[^\p{L}]*" + "(" + _speaker_regex + ")")
_repeated_turn = re.compile(r"(" + _speaker_regex + r") ([^\[]*)\s\1")


def capitalize(text):
    # michel JR claude-marie -> Michel JR Claude-Marie
    words = text.split(" ")
    words = [w.capitalize() if (not w.isupper() or len(w)>2) else w for w in words]
    for i, w in enumerate(words):
        for sep in "-", "'":
            if sep in w:
                words[i] = sep.join([x.capitalize() if not x.isupper() else x for x in w.split(sep)])
    return " ".join(words)

# # Test
# list(generate(*(examples[0][:1] + [[]] + examples[0][1:])))


chat_interface = gr.ChatInterface(
    fn=generate,
    title=title,
    description=description,
    chatbot=gr.Chatbot(label=chatbot_label),
    textbox=textbox,
    examples=examples,
    additional_inputs=additional_inputs,
    additional_inputs_accordion=gr.Accordion(
        label="Paramètres",
        open=True,
    ),
    autofocus=False,
    **gradio_buttons,
)

if __name__ == "__main__":
    print("Launching chat...")
    with gr.Blocks(css="style.css") as demo:
        chat_interface.render()
        demo.queue(max_size=20).launch()