Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import threading | |
from collections import deque | |
import plotly.graph_objs as go | |
import pynvml | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from vptq.app_utils import get_chat_loop_generator | |
models = [ | |
{ | |
"name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-65536-woft", | |
"bits": "4 bits" | |
}, | |
{ | |
"name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-256-woft", | |
"bits": "3 bits" | |
}, | |
] | |
# Queues for storing historical data (saving the last 100 GPU utilization and memory usage values) | |
gpu_util_history = deque(maxlen=100) | |
mem_usage_history = deque(maxlen=100) | |
def initialize_nvml(): | |
""" | |
Initialize NVML (NVIDIA Management Library). | |
""" | |
pynvml.nvmlInit() | |
def get_gpu_info(): | |
""" | |
Get GPU utilization and memory usage information. | |
Returns: | |
dict: A dictionary containing GPU utilization and memory usage information. | |
""" | |
handle = pynvml.nvmlDeviceGetHandleByIndex(0) # Assuming a single GPU setup | |
utilization = pynvml.nvmlDeviceGetUtilizationRates(handle) | |
memory = pynvml.nvmlDeviceGetMemoryInfo(handle) | |
gpu_info = { | |
'gpu_util': utilization.gpu, | |
'mem_used': memory.used / 1024**2, # Convert bytes to MiB | |
'mem_total': memory.total / 1024**2, # Convert bytes to MiB | |
'mem_percent': (memory.used / memory.total) * 100 | |
} | |
return gpu_info | |
def _update_charts(chart_height: int = 200) -> go.Figure: | |
""" | |
Update the GPU utilization and memory usage charts. | |
Args: | |
chart_height (int, optional): used to set the height of the chart. Defaults to 200. | |
Returns: | |
plotly.graph_objs.Figure: The updated figure containing the GPU and memory usage charts. | |
""" | |
# obtain GPU information | |
gpu_info = get_gpu_info() | |
# records the latest GPU utilization and memory usage values | |
gpu_util = round(gpu_info.get('gpu_util', 0), 1) | |
mem_used = round(gpu_info.get('mem_used', 0) / 1024, 2) # Convert MiB to GiB | |
gpu_util_history.append(gpu_util) | |
mem_usage_history.append(mem_used) | |
# create GPU utilization line chart | |
gpu_trace = go.Scatter( | |
y=list(gpu_util_history), | |
mode='lines+markers', | |
text=list(gpu_util_history), | |
line=dict(shape='spline', color='blue'), # Make the line smooth and set color | |
yaxis='y1' # Link to y-axis 1 | |
) | |
# create memory usage line chart | |
mem_trace = go.Scatter( | |
y=list(mem_usage_history), | |
mode='lines+markers', | |
text=list(mem_usage_history), | |
line=dict(shape='spline', color='red'), # Make the line smooth and set color | |
yaxis='y2' # Link to y-axis 2 | |
) | |
# set the layout of the chart | |
layout = go.Layout( | |
xaxis=dict(title=None, showticklabels=False, ticks=''), | |
yaxis=dict( | |
title='GPU Utilization (%)', | |
range=[-5, 110], | |
titlefont=dict(color='blue'), | |
tickfont=dict(color='blue'), | |
), | |
yaxis2=dict(title='Memory Usage (GiB)', | |
range=[0, max(24, | |
max(mem_usage_history) + 1)], | |
titlefont=dict(color='red'), | |
tickfont=dict(color='red'), | |
overlaying='y', | |
side='right'), | |
height=chart_height, # set the height of the chart | |
margin=dict(l=10, r=10, t=0, b=0), # set the margin of the chart | |
showlegend=False # disable the legend | |
) | |
fig = go.Figure(data=[gpu_trace, mem_trace], layout=layout) | |
return fig | |
def initialize_history(): | |
""" | |
Initializes the GPU utilization and memory usage history. | |
""" | |
for _ in range(100): | |
gpu_info = get_gpu_info() | |
gpu_util_history.append(round(gpu_info.get('gpu_util', 0), 1)) | |
mem_usage_history.append(round(gpu_info.get('mem_percent', 0), 1)) | |
def enable_gpu_info(): | |
pynvml.nvmlInit() | |
def disable_gpu_info(): | |
pynvml.nvmlShutdown() | |
model_choices = [f"{model['name']} ({model['bits']})" for model in models] | |
display_to_model = {f"{model['name']} ({model['bits']})": model['name'] for model in models} | |
def download_model(model): | |
print(f"Downloading {model['name']}...") | |
snapshot_download(repo_id=model['name']) | |
def download_models_in_background(): | |
print('Downloading models for the first time...') | |
for model in models: | |
download_model(model) | |
download_thread = threading.Thread(target=download_models_in_background) | |
download_thread.start() | |
loaded_models = {} | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
selected_model_display_label, | |
): | |
model_name = display_to_model[selected_model_display_label] | |
# Check if the model is already loaded | |
if model_name not in loaded_models: | |
# Load and store the model in the cache | |
loaded_models[model_name] = get_chat_loop_generator(model_name) | |
chat_completion = loaded_models[model_name] | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# enable_gpu_info() | |
with gr.Blocks(fill_height=True) as demo: | |
# with gr.Row(): | |
# def update_chart(): | |
# return _update_charts(chart_height=200) | |
# gpu_chart = gr.Plot(update_chart, every=0.1) # update every 0.1 seconds | |
with gr.Column(): | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Dropdown( | |
choices=model_choices, | |
value=model_choices[0], | |
label="Select Model", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
share = os.getenv("SHARE_LINK", None) in ["1", "true", "True"] | |
demo.launch(share=share) | |
# disable_gpu_info() | |