import spaces import os import threading import gradio as gr from huggingface_hub import snapshot_download from vptq.app_utils import get_chat_loop_generator models = [ { "name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v12-k65536-4096-woft", "bits": "2.3 bits" }, { "name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-256-woft", "bits": "3 bits" }, { "name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-4096-woft", "bits": "3.5 bits" }, { "name": "VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k32768-0-woft", "bits": "1.85 bits" }, ] def initialize_history(): """ Initializes the GPU utilization and memory usage history. """ for _ in range(100): gpu_info = get_gpu_info() gpu_util_history.append(round(gpu_info.get('gpu_util', 0), 1)) mem_usage_history.append(round(gpu_info.get('mem_percent', 0), 1)) model_choices = [f"{model['name']} ({model['bits']})" for model in models] display_to_model = {f"{model['name']} ({model['bits']})": model['name'] for model in models} def download_model(model): print(f"Downloading {model['name']}...") snapshot_download(repo_id=model['name']) def download_models_in_background(): print('Downloading models for the first time...') for model in models: download_model(model) download_thread = threading.Thread(target=download_models_in_background) download_thread.start() loaded_model = None loaded_model_name = None @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, selected_model_display_label, ): model_name = display_to_model[selected_model_display_label] global loaded_model global loaded_model_name # Check if the model is already loaded if model_name is not loaded_model_name: # Load and store the model in the cache loaded_model = get_chat_loop_generator(model_name) loaded_model_name = model_name chat_completion = loaded_model messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # enable_gpu_info() with gr.Blocks(fill_height=True) as demo: # with gr.Row(): # def update_chart(): # return _update_charts(chart_height=200) # gpu_chart = gr.Plot(update_chart, every=0.1) # update every 0.1 seconds with gr.Column(): chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Dropdown( choices=model_choices, value=model_choices[0], label="Select Model", ), ], ) if __name__ == "__main__": share = os.getenv("SHARE_LINK", None) in ["1", "true", "True"] demo.launch(share=share)