Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,341 Bytes
bab4b6d ed2055f bab4b6d ed2055f bab4b6d ed2055f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
# python image_gradio.py >> ./logs/image_gradio.log 2>&1
import time
import os
import gradio as gr
import spaces
from pnpxai.core.experiment.auto_explanation import AutoExplanationForImageClassification
from pnpxai.core.detector.detector import extract_graph_data, symbolic_trace
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
import networkx as nx
import secrets
PLOT_PER_LINE = 4
N_FEATURES_TO_SHOW = 5
OPT_N_TRIALS = 10
OBJECTIVE_METRIC = "AbPC"
SAMPLE_METHOD = "tpe"
DEFAULT_EXPLAINER = ["GradientXInput", "IntegratedGradients", "LRPEpsilonPlus"]
class App:
def __init__(self):
pass
class Component:
def __init__(self):
pass
class Tab(Component):
def __init__(self):
pass
class OverviewTab(Tab):
def __init__(self):
pass
def show(self):
with gr.Tab(label="Overview") as tab:
gr.Label("This is the overview tab.")
gr.HTML(self.desc())
def desc(self):
with open("static/overview.html", "r") as f:
desc = f.read()
return desc
class DetectionTab(Tab):
def __init__(self, experiments):
self.experiments = experiments
def show(self):
with gr.Tab(label="Detection") as tab:
gr.Label("This is the detection tab.")
for nm, exp_info in self.experiments.items():
exp = exp_info['experiment']
detector_res = DetectorRes(exp)
detector_res.show()
class LocalExpTab(Tab):
def __init__(self, experiments):
self.experiments = experiments
self.experiment_components = []
for nm, exp_info in self.experiments.items():
self.experiment_components.append(Experiment(exp_info))
def description(self):
return "This tab shows the local explanation."
def show(self):
with gr.Tab(label="Local Explanation") as tab:
gr.Label("This is the local explanation tab.")
for i, exp in enumerate(self.experiments):
self.experiment_components[i].show()
class DetectorRes(Component):
def __init__(self, experiment):
self.experiment = experiment
graph_module = symbolic_trace(experiment.model)
self.graph_data = extract_graph_data(graph_module)
def describe(self):
return "This component shows the detection result."
def show(self):
G = nx.DiGraph()
root = None
for node in self.graph_data['nodes']:
if node['op'] == 'placeholder':
root = node['name']
G.add_node(node['name'])
for edge in self.graph_data['edges']:
if edge['source'] in G.nodes and edge['target'] in G.nodes:
G.add_edge(edge['source'], edge['target'])
def get_pos1(graph):
graph = graph.copy()
for layer, nodes in enumerate(reversed(tuple(nx.topological_generations(graph)))):
for node in nodes:
graph.nodes[node]["layer"] = layer
pos = nx.multipartite_layout(graph, subset_key="layer", align='horizontal')
return pos
def get_pos2(graph, root, levels=None, width=1., height=1.):
'''
G: the graph
root: the root node
levels: a dictionary
key: level number (starting from 0)
value: number of nodes in this level
width: horizontal space allocated for drawing
height: vertical space allocated for drawing
'''
TOTAL = "total"
CURRENT = "current"
def make_levels(levels, node=root, currentLevel=0, parent=None):
# Compute the number of nodes for each level
if not currentLevel in levels:
levels[currentLevel] = {TOTAL: 0, CURRENT: 0}
levels[currentLevel][TOTAL] += 1
neighbors = graph.neighbors(node)
for neighbor in neighbors:
if not neighbor == parent:
levels = make_levels(levels, neighbor, currentLevel + 1, node)
return levels
def make_pos(pos, node=root, currentLevel=0, parent=None, vert_loc=0):
dx = 1/levels[currentLevel][TOTAL]
left = dx/2
pos[node] = ((left + dx*levels[currentLevel][CURRENT])*width, vert_loc)
levels[currentLevel][CURRENT] += 1
neighbors = graph.neighbors(node)
for neighbor in neighbors:
if not neighbor == parent:
pos = make_pos(pos, neighbor, currentLevel +
1, node, vert_loc-vert_gap)
return pos
if levels is None:
levels = make_levels({})
else:
levels = {l: {TOTAL: levels[l], CURRENT: 0} for l in levels}
vert_gap = height / (max([l for l in levels])+1)
return make_pos({})
def plot_graph(graph, pos):
fig = plt.figure(figsize=(12, 24))
ax = fig.gca()
nx.draw(graph, pos=pos, with_labels=True, node_size=60, font_size=8, ax=ax)
fig.tight_layout()
return fig
pos = get_pos1(G)
fig = plot_graph(G, pos)
# pos = get_pos2(G, root)
# fig = plot_graph(G, pos)
with gr.Row():
gr.Textbox(value="Image Classficiation", label="Task")
gr.Textbox(value=f"{self.experiment.model.__class__.__name__}", label="Model")
gr.Plot(value=fig, label=f"Model Architecture of {self.experiment.model.__class__.__name__}", visible=True)
class ImgGallery(Component):
def __init__(self, imgs):
self.imgs = imgs
self.selected_index = gr.Number(value=0, label="Selected Index", visible=False)
def on_select(self, evt: gr.SelectData):
return evt.index
def show(self):
self.gallery_obj = gr.Gallery(value=self.imgs, label="Input Data Gallery", columns=6, height=200)
self.gallery_obj.select(self.on_select, outputs=self.selected_index)
class Experiment(Component):
def __init__(self, exp_info):
self.exp_info = exp_info
self.experiment = exp_info['experiment']
self.input_visualizer = exp_info['input_visualizer']
self.target_visualizer = exp_info['target_visualizer']
def viz_input(self, input, data_id):
orig_img_np = self.input_visualizer(input)
orig_img = px.imshow(orig_img_np)
orig_img.update_layout(
title=f"Data ID: {data_id}",
width=400,
height=350,
xaxis=dict(
showticklabels=False,
ticks='',
showgrid=False
),
yaxis=dict(
showticklabels=False,
ticks='',
showgrid=False
),
)
return orig_img
def get_prediction(self, record, topk=3):
probs = record['output'].softmax(-1).squeeze().detach().numpy()
text = f"Ground Truth Label: {self.target_visualizer(record['label'])}\n"
for ind, pred in enumerate(probs.argsort()[-topk:][::-1]):
label = self.target_visualizer(torch.tensor(pred))
prob = probs[pred]
text += f"Top {ind+1} Prediction: {label} ({prob:.2f})\n"
return text
def get_exp_plot(self, data_index, exp_res):
return ExpRes(data_index, exp_res).show()
def get_metric_id_by_name(self, metric_name):
metric_info = self.experiment.manager.get_metrics()
idx = [metric.__class__.__name__ for metric in metric_info[0]].index(metric_name)
return metric_info[1][idx]
def generate_record(self, data_id, metric_names):
record = {}
_base = self.experiment.run_batch([data_id], 0, 0, 0)
record['data_id'] = data_id
record['input'] = _base['inputs']
record['label'] = _base['labels']
record['output'] = _base['outputs']
record['target'] = _base['targets']
record['explanations'] = []
metrics_ids = [self.get_metric_id_by_name(metric_nm) for metric_nm in metric_names]
cnt = 0
for info in self.explainer_checkbox_group.info:
if info['checked']:
base = self.experiment.run_batch([data_id], info['id'], info['pp_id'], 0)
record['explanations'].append({
'explainer_nm': base['explainer'].__class__.__name__,
'value': base['postprocessed'],
'mode' : info['mode'],
'evaluations': []
})
for metric_id in metrics_ids:
res = self.experiment.run_batch([data_id], info['id'], info['pp_id'], metric_id)
record['explanations'][-1]['evaluations'].append({
'metric_nm': res['metric'].__class__.__name__,
'value' : res['evaluation']
})
cnt += 1
# Sort record['explanations'] with respect to the metric values
if len(record['explanations'][0]['evaluations']) > 0:
record['explanations'] = sorted(record['explanations'], key=lambda x: x['evaluations'][0]['value'], reverse=True)
return record
def show(self):
with gr.Row():
gr.Textbox(value="Image Classficiation", label="Task")
gr.Textbox(value=f"{self.experiment.model.__class__.__name__}", label="Model")
gr.Textbox(value="Heatmap", label="Explanation Type")
dset = self.experiment.manager._data.dataset
imgs = []
for i in range(len(dset)):
img = self.input_visualizer(dset[i][0])
imgs.append(img)
gallery = ImgGallery(imgs)
gallery.show()
explainers, _ = self.experiment.manager.get_explainers()
explainer_names = [exp.__class__.__name__ for exp in explainers]
self.explainer_checkbox_group = ExplainerCheckboxGroup(explainer_names, self.experiment, gallery)
self.explainer_checkbox_group.show()
cr_metrics_names = ["AbPC", "MoRF", "LeRF", "MuFidelity"]
cn_metrics_names = ["Sensitivity"]
cp_metrics_names = ["Complexity"]
with gr.Accordion("Evaluators", open=True):
with gr.Row():
cr_metrics = gr.CheckboxGroup(choices=cr_metrics_names, value=[cr_metrics_names[0]], label="Correctness")
def on_select(metrics):
if cr_metrics_names[0] not in metrics:
gr.Warning(f"{cr_metrics_names[0]} is required for the sorting the explanations.")
return [cr_metrics_names[0]] + metrics
else:
return metrics
cr_metrics.select(on_select, inputs=cr_metrics, outputs=cr_metrics)
with gr.Row():
# cn_metrics = gr.CheckboxGroup(choices=cn_metrics_names, value=cn_metrics_names, label="Continuity")
cn_metrics = gr.CheckboxGroup(choices=cn_metrics_names, label="Continuity")
with gr.Row():
# cp_metrics = gr.CheckboxGroup(choices=cp_metrics_names, value=cp_metrics_names[0], label="Compactness")
cp_metrics = gr.CheckboxGroup(choices=cp_metrics_names, label="Compactness")
metric_inputs = [cr_metrics, cn_metrics, cp_metrics]
data_id = gallery.selected_index
bttn = gr.Button("Explain", variant="primary")
buffer_size = 2 * len(explainer_names)
buffer_n_rows = buffer_size // PLOT_PER_LINE
buffer_n_rows = buffer_n_rows + 1 if buffer_size % PLOT_PER_LINE != 0 else buffer_n_rows
plots = [gr.Textbox(label="Prediction result", visible=False)]
for i in range(buffer_n_rows):
with gr.Row():
for j in range(PLOT_PER_LINE):
plot = gr.Image(value=None, label="Blank", visible=False)
plots.append(plot)
def show_plots():
_plots = [gr.Textbox(label="Prediction result", visible=False)]
num_plots = sum([1 for info in self.explainer_checkbox_group.info if info['checked']])
n_rows = num_plots // PLOT_PER_LINE
n_rows = n_rows + 1 if num_plots % PLOT_PER_LINE != 0 else n_rows
_plots += [gr.Image(value=None, label="Blank", visible=True)] * (n_rows * PLOT_PER_LINE)
_plots += [gr.Image(value=None, label="Blank", visible=False)] * ((buffer_n_rows - n_rows) * PLOT_PER_LINE)
return _plots
@spaces.GPU
def render_plots(data_id, *metric_inputs):
# Clear Cache Files
print(f"GPU Check: {torch.cuda.is_available()}")
print("Which GPU: ", torch.cuda.current_device())
cache_dir = f"{os.environ['GRADIO_TEMP_DIR']}/res"
if not os.path.exists(cache_dir): os.makedirs(cache_dir)
for f in os.listdir(cache_dir):
if len(f.split(".")[0]) == 16:
os.remove(os.path.join(cache_dir, f))
# Render Plots
metric_input = []
for metric in metric_inputs:
if metric:
metric_input += metric
record = self.generate_record(data_id, metric_input)
pred = self.get_prediction(record)
plots = [gr.Textbox(label="Prediction result", value=pred, visible=True)]
num_plots = sum([1 for info in self.explainer_checkbox_group.info if info['checked']])
n_rows = num_plots // PLOT_PER_LINE
n_rows = n_rows + 1 if num_plots % PLOT_PER_LINE != 0 else n_rows
for i in range(n_rows):
for j in range(PLOT_PER_LINE):
if i*PLOT_PER_LINE+j < len(record['explanations']):
exp_res = record['explanations'][i*PLOT_PER_LINE+j]
path = self.get_exp_plot(data_id, exp_res)
plot_obj = gr.Image(value=path, label=f"{exp_res['explainer_nm']} ({exp_res['mode']})", visible=True)
plots.append(plot_obj)
else:
plots.append(gr.Image(value=None, label="Blank", visible=True))
plots += [gr.Image(value=None, label="Blank", visible=False)] * ((buffer_n_rows - n_rows) * PLOT_PER_LINE)
return plots
bttn.click(show_plots, outputs=plots)
bttn.click(render_plots, inputs=[data_id] + metric_inputs, outputs=plots)
class ExplainerCheckboxGroup(Component):
def __init__(self, explainer_names, experiment, gallery):
super().__init__()
self.explainer_names = explainer_names
self.explainer_objs = []
self.experiment = experiment
self.gallery = gallery
explainers, exp_ids = self.experiment.manager.get_explainers()
self.info = []
for exp, exp_id in zip(explainers, exp_ids):
exp_nm = exp.__class__.__name__
if exp_nm in DEFAULT_EXPLAINER:
checked = True
else:
checked = False
self.info.append({'nm': exp_nm, 'id': exp_id, 'pp_id' : 0, 'mode': 'default', 'checked': checked})
def update_check(self, exp_id, val=None):
for info in self.info:
if info['id'] == exp_id:
if val is not None:
info['checked'] = val
else:
info['checked'] = not info['checked']
def insert_check(self, exp_nm, exp_id, pp_id):
if exp_id in [info['id'] for info in self.info]:
return
self.info.append({'nm': exp_nm, 'id': exp_id, 'pp_id' : pp_id, 'mode': 'optimal', 'checked': False})
def update_gallery_change(self):
checkboxes = []
bttns = []
for exp in self.explainer_objs:
val = exp.explainer_name in DEFAULT_EXPLAINER
checkboxes.append(gr.Checkbox(label="Default Parameter", value=val, interactive=True))
checkboxes += [gr.Checkbox(label="Optimized Parameter (Not Optimal)", value=False, interactive=False)] * len(self.explainer_objs)
bttns += [gr.Button(value="Optimize", size="sm", variant="primary")] * len(self.explainer_objs)
for exp in self.explainer_objs:
val = exp.explainer_name in DEFAULT_EXPLAINER
self.update_check(exp.default_exp_id, val)
if hasattr(exp, "optimal_exp_id"):
self.update_check(exp.optimal_exp_id, False)
return checkboxes + bttns
def get_checkboxes(self):
checkboxes = []
checkboxes += [exp.default_check for exp in self.explainer_objs]
checkboxes += [exp.opt_check for exp in self.explainer_objs]
return checkboxes
def get_bttns(self):
return [exp.bttn for exp in self.explainer_objs]
def show(self):
cnt = 0
sorted_info = sorted(self.info, key=lambda x: (x['nm'] not in DEFAULT_EXPLAINER, x['nm']))
with gr.Accordion("Explainers", open=True):
while cnt * PLOT_PER_LINE < len(self.explainer_names):
with gr.Row():
for info in sorted_info[cnt*PLOT_PER_LINE:(cnt+1)*PLOT_PER_LINE]:
explainer_obj = ExplainerCheckbox(info['nm'], self, self.experiment, self.gallery)
self.explainer_objs.append(explainer_obj)
explainer_obj.show()
cnt += 1
checkboxes = self.get_checkboxes()
bttns = self.get_bttns()
self.gallery.gallery_obj.select(
fn=self.update_gallery_change,
outputs=checkboxes + bttns
)
class ExplainerCheckbox(Component):
def __init__(self, explainer_name, groups, experiment, gallery):
self.explainer_name = explainer_name
self.groups = groups
self.experiment = experiment
self.gallery = gallery
self.default_exp_id = self.get_explainer_id_by_name(explainer_name)
self.obj_metric = self.get_metric_id_by_name(OBJECTIVE_METRIC)
def get_explainer_id_by_name(self, explainer_name):
explainer_info = self.experiment.manager.get_explainers()
idx = [exp.__class__.__name__ for exp in explainer_info[0]].index(explainer_name)
return explainer_info[1][idx]
def get_metric_id_by_name(self, metric_name):
metric_info = self.experiment.manager.get_metrics()
idx = [metric.__class__.__name__ for metric in metric_info[0]].index(metric_name)
return metric_info[1][idx]
@spaces.GPU
def optimize(self):
# if self.explainer_name in ["Lime", "KernelShap", "IntegratedGradients"]:
# gr.Info("Lime, KernelShap and IntegratedGradients currently do not support hyperparameter optimization.")
# return [gr.update()] * 2
data_id = self.gallery.selected_index
opt_output = self.experiment.optimize(
data_ids=data_id.value,
explainer_id=self.default_exp_id,
metric_id=self.obj_metric,
direction='maximize',
sampler=SAMPLE_METHOD,
n_trials=OPT_N_TRIALS,
)
def get_str_ppid(pp_obj):
return pp_obj.pooling_fn.__class__.__name__ + pp_obj.normalization_fn.__class__.__name__
str_id = get_str_ppid(opt_output.postprocessor)
for pp_obj, pp_id in zip(*self.experiment.manager.get_postprocessors()):
if get_str_ppid(pp_obj) == str_id:
opt_postprocessor_id = pp_id
break
opt_explainer_id = max([x['id'] for x in self.groups.info]) + 1
opt_output.explainer.model = self.experiment.model
self.experiment.manager._explainers.append(opt_output.explainer)
self.experiment.manager._explainer_ids.append(opt_explainer_id)
self.groups.insert_check(self.explainer_name, opt_explainer_id, opt_postprocessor_id)
self.optimal_exp_id = opt_explainer_id
checkbox = gr.update(label="Optimized Parameter (Optimal)", interactive=True)
bttn = gr.update(value="Optimized", variant="secondary")
return [checkbox, bttn]
def default_on_select(self, evt: gr.EventData):
self.groups.update_check(self.default_exp_id, evt._data['value'])
def optimal_on_select(self, evt: gr.EventData):
if hasattr(self, "optimal_exp_id"):
self.groups.update_check(self.optimal_exp_id, evt._data['value'])
else:
raise ValueError("Optimal explainer id is not found.")
def show(self):
val = self.explainer_name in DEFAULT_EXPLAINER
with gr.Accordion(self.explainer_name, open=val):
checked = next(filter(lambda x: x['nm'] == self.explainer_name, self.groups.info))['checked']
self.default_check = gr.Checkbox(label="Default Parameter", value=checked, interactive=True)
self.opt_check = gr.Checkbox(label="Optimized Parameter (Not Optimal)", interactive=False)
self.default_check.select(self.default_on_select)
self.opt_check.select(self.optimal_on_select)
self.bttn = gr.Button(value="Optimize", size="sm", variant="primary")
self.bttn.click(self.optimize, outputs=[self.opt_check, self.bttn], queue=True, concurrency_limit=1)
class ExpRes(Component):
def __init__(self, data_index, exp_res):
self.data_index = data_index
self.exp_res = exp_res
def show(self):
value = self.exp_res['value']
fig = go.Figure(data=go.Heatmap(
z=np.flipud(value[0].detach().numpy()),
colorscale='Reds',
showscale=False # remove color bar
))
evaluations = self.exp_res['evaluations']
metric_values = [f"{eval['metric_nm'][:4]}: {eval['value'].item():.2f}" for eval in evaluations if eval['value'] is not None]
n = 3
cnt = 0
while cnt * n < len(metric_values):
metric_text = ', '.join(metric_values[cnt*n:cnt*n+n])
fig.add_annotation(
x=0,
y=-0.1 * (cnt+1),
xref='paper',
yref='paper',
text=metric_text,
showarrow=False,
font=dict(
size=18,
),
)
cnt += 1
fig = fig.update_layout(
width=380,
height=400,
xaxis=dict(
showticklabels=False,
ticks='',
showgrid=False
),
yaxis=dict(
showticklabels=False,
ticks='',
showgrid=False
),
margin=dict(t=40, b=40*cnt, l=20, r=20),
)
# Generate Random Unique ID
root = f"{os.environ['GRADIO_TEMP_DIR']}/res"
if not os.path.exists(root): os.makedirs(root)
key = secrets.token_hex(8)
path = f"{root}/{key}.png"
fig.write_image(path)
return path
class ImageClsApp(App):
def __init__(self, experiments, **kwargs):
self.name = "Image Classification App"
super().__init__(**kwargs)
self.experiments = experiments
self.overview_tab = OverviewTab()
self.detection_tab = DetectionTab(self.experiments)
self.local_exp_tab = LocalExpTab(self.experiments)
def title(self):
return f"""
<div style="text-align: center;">
<a href="https://openxaiproject.github.io/pnpxai/">
<img src="file/static/XAI-Top-PnP.png" width="167" height="100">
</a>
<h1> Plug and Play XAI Platform for Image Classification </h1>
</div>
"""
def launch(self, **kwargs):
with gr.Blocks(
title=self.name,
) as demo:
file_path = os.path.dirname(os.path.abspath(__file__))
gr.set_static_paths(file_path)
gr.HTML(self.title())
self.overview_tab.show()
self.detection_tab.show()
self.local_exp_tab.show()
return demo
# if __name__ == '__main__':
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
from helpers import get_imagenet_dataset, get_torchvision_model, denormalize_image
os.environ['GRADIO_TEMP_DIR'] = '.tmp'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
def target_visualizer(x): return dataset.dataset.idx_to_label(x.item())
experiments = {}
model, transform = get_torchvision_model('resnet18')
dataset = get_imagenet_dataset(transform)
loader = DataLoader(dataset, batch_size=4, shuffle=False)
experiment1 = AutoExplanationForImageClassification(
model=model.to(device),
data=loader,
input_extractor=lambda batch: batch[0].to(device),
label_extractor=lambda batch: batch[-1].to(device),
target_extractor=lambda outputs: outputs.argmax(-1).to(device),
channel_dim=1
)
experiments['experiment1'] = {
'name': 'ResNet18',
'experiment': experiment1,
'input_visualizer': lambda x: denormalize_image(x, transform.mean, transform.std),
'target_visualizer': target_visualizer,
}
model, transform = get_torchvision_model('vit_b_16')
dataset = get_imagenet_dataset(transform)
loader = DataLoader(dataset, batch_size=4, shuffle=False)
experiment2 = AutoExplanationForImageClassification(
model=model.to(device),
data=loader,
input_extractor=lambda batch: batch[0].to(device),
label_extractor=lambda batch: batch[-1].to(device),
target_extractor=lambda outputs: outputs.argmax(-1).to(device),
channel_dim=1
)
experiments['experiment2'] = {
'name': 'ViT-B_16',
'experiment': experiment2,
'input_visualizer': lambda x: denormalize_image(x, transform.mean, transform.std),
'target_visualizer': target_visualizer,
}
app = ImageClsApp(experiments)
demo = app.launch()
demo.launch(favicon_path=f"static/XAI-Top-PnP.svg")
|