Spaces:
Runtime error
Runtime error
File size: 3,185 Bytes
8d175cc 5722b62 8d175cc 5722b62 8d175cc 5722b62 8d175cc 5722b62 8d175cc 5722b62 8d175cc 5722b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification
from nooffense.sentence_encoder import SentenceEncoder
import numpy as np
import gradio as gr
import os
class EmbedInterface:
def __init__(self):
self.models = [
"Overfit-GM/bert-base-turkish-cased-offensive",
"Overfit-GM/bert-base-turkish-uncased-offensive",
"Overfit-GM/bert-base-turkish-128k-cased-offensive",
"Overfit-GM/bert-base-turkish-128k-uncased-offensive",
"Overfit-GM/convbert-base-turkish-mc4-cased-offensive",
"Overfit-GM/convbert-base-turkish-mc4-uncased-offensive",
"Overfit-GM/convbert-base-turkish-cased-offensive",
"Overfit-GM/distilbert-base-turkish-cased-offensive",
"Overfit-GM/electra-base-turkish-cased-discriminator-offensive",
"Overfit-GM/electra-base-turkish-mc4-cased-discriminator-offensive",
"Overfit-GM/electra-base-turkish-mc4-uncased-discriminator-offensive",
"Overfit-GM/xlm-roberta-large-turkish-offensive",
"Overfit-GM/mdeberta-v3-base-offensive"
]
def clear_sentences(self):
return ""
def display_list(self, written_text, text_to_add):
if written_text == "":
new_text = text_to_add
else:
new_text = written_text + "\n" + text_to_add
return new_text
def sentiment_analysis(self, text, model_choice, text_to_compare):
sentence_list = text_to_compare.split('\n')
model = SentenceEncoder(self.models[model_choice])
pred = model.find_most_similar(text, sentence_list)
return {p[0]:(float(p[1]) if p[1]>0 else 0) for p in pred}
def __call__(self):
with gr.Blocks() as embed_interface:
gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">No Offense Sentence Similarity</h1></div>""")
with gr.Row():
with gr.Column():
model_choice = gr.Dropdown(label="Select Model", choices=[m for m in self.models], type="index", interactive=True)
input_text = gr.Textbox(label="Input", placeholder="senin ben amk")
with gr.Row():
with gr.Column():
input_text2 = gr.Textbox(label ='Add Sentence', placeholder='aptal aptal konuşma')
with gr.Column():
input_text3 = gr.Textbox(label ='Sentences List')
with gr.Row():
add_button = gr.Button('Add')
clear_button = gr.Button('Clear')
the_button = gr.Button("Run")
with gr.Column():
output_window = gr.Label(num_top_classes=5, show_label=False)
clear_button.click(self.clear_sentences, outputs=[input_text3])
add_button.click(self.display_list, inputs=[input_text3,input_text2], outputs=[input_text3])
the_button.click(self.sentiment_analysis, inputs=[input_text, model_choice, input_text3], outputs=[output_window])
return embed_interface |