Spaces:
Runtime error
Runtime error
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import gradio as gr | |
# def get_model(model_name='Overfit-GM/temp_dist'): | |
# id2label = {0: 'INSULT', 1: 'OTHER', | |
# 2: 'PROFANITY', 3: 'RACIST', 4: 'SEXIST'} | |
# label2id = {v: k for k, v in id2label.items()} | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# model = AutoModelForSequenceClassification.from_pretrained(model_name, | |
# problem_type="single_label_classification", | |
# id2label=id2label, | |
# label2id=label2id, | |
# num_labels=5, | |
# output_hidden_states=False, | |
# ) | |
# return model, tokenizer | |
models = [ | |
"Overfit-GM/temp_dist", | |
"Overfit-GM/bert-base-turkish-cased-offensive" | |
] | |
model_box=[ | |
gr.load(models[0], src='models'), | |
gr.load(models[1], src='models'), | |
] | |
def sentiment_analysis(text, model_choice): | |
a_variable = model_box[model_choice] | |
output = a_variable(text) | |
return output | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">No Offense Classifier</h1></div>""") | |
with gr.Row(): | |
with gr.Column(): | |
model_choice = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", interactive=True) | |
input_text = gr.Textbox(label="Input", placeholder="senin ben amk") | |
the_button = gr.Button(label="Run") | |
with gr.Column(): | |
output_window = gr.Label(num_top_classes=5) | |
the_button.click(sentiment_analysis, inputs=[input_text, model_choice], outputs=[output_window]) | |
examples = gr.Examples(examples=["bu adamların ülkesine dönmesi lazım", "adam olsan oraya gitmezdin"], | |
inputs=[input_text]) | |
demo.launch() |