AcikHack-Tools / app.py
Ertugrul's picture
Update app.py
f05c82b
raw
history blame
2.16 kB
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
# def get_model(model_name='Overfit-GM/temp_dist'):
# id2label = {0: 'INSULT', 1: 'OTHER',
# 2: 'PROFANITY', 3: 'RACIST', 4: 'SEXIST'}
# label2id = {v: k for k, v in id2label.items()}
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSequenceClassification.from_pretrained(model_name,
# problem_type="single_label_classification",
# id2label=id2label,
# label2id=label2id,
# num_labels=5,
# output_hidden_states=False,
# )
# return model, tokenizer
models = [
"Overfit-GM/temp_dist",
"Overfit-GM/bert-base-turkish-cased-offensive"
]
model_box=[
gr.load(models[0], src='models'),
gr.load(models[1], src='models'),
]
def sentiment_analysis(text, model_choice):
a_variable = model_box[model_choice]
output = a_variable(text)
return output
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">No Offense Classifier</h1></div>""")
with gr.Row():
with gr.Column():
model_choice = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", interactive=True)
input_text = gr.Textbox(label="Input", placeholder="senin ben amk")
the_button = gr.Button(label="Run")
with gr.Column():
output_window = gr.Label(num_top_classes=5)
the_button.click(sentiment_analysis, inputs=[input_text, model_choice], outputs=[output_window])
examples = gr.Examples(examples=["bu adamların ülkesine dönmesi lazım", "adam olsan oraya gitmezdin"],
inputs=[input_text])
demo.launch()