Owos commited on
Commit
c531a5c
1 Parent(s): 4a416e1

added styling

Browse files
Files changed (1) hide show
  1. streamlit_deploy.py +67 -0
streamlit_deploy.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2 as cv
3
+ from keras.models import load_model
4
+ import tensorflow as tf
5
+ from tensorflow.keras.preprocessing import image
6
+ import matplotlib.pyplot as plt
7
+ import os
8
+ import streamlit as st
9
+ from styling import footer
10
+
11
+ st.cache(allow_output_mutation=True)
12
+ st.title("TB Image Classifier")
13
+ #
14
+ gpu_devices = tf.config.experimental.list_physical_devices("GPU")
15
+ for device in gpu_devices:
16
+ tf.config.experimental.set_memory_growth(device, True)
17
+ # loading model
18
+ model_path = "./tb_model"
19
+ model = load_model(model_path)
20
+ # loading the imaage
21
+
22
+ file = st.file_uploader(
23
+ "Upload the image",
24
+ type=["png", "jpg"],
25
+ accept_multiple_files=False,
26
+ key=None,
27
+ help=None,
28
+ on_change=None,
29
+ args=None,
30
+ kwargs=None,
31
+ )
32
+
33
+ run = st.button(
34
+ "Make Prediction", key=None, help=None, on_click=None, args=None, kwargs=None
35
+ )
36
+ st.subheader("This app classifies an x-ray image if it has TB or not")
37
+ # image laoder
38
+ def load_image(img_path, img_size, show=False):
39
+ img = image.load_img(img_path, target_size=img_size)
40
+ img_tensor = image.img_to_array(img)
41
+ img_tensor = np.expand_dims(img_tensor, axis=0) # expanding image tensor
42
+ img_tensor = img_tensor / 255.0 # scaling the image_T
43
+
44
+ if show:
45
+ plt.imshow(img_tensor[0])
46
+ plt.axis("off")
47
+ plt.show()
48
+ return img_tensor
49
+
50
+
51
+ img_size = (300, 300)
52
+ img_path = "inference image from medscape.jpg"
53
+
54
+ classes = ["Normal", "Tuberculosis"]
55
+ if __name__ == "__main__":
56
+ ## load img
57
+ footer()
58
+ if run == True:
59
+ if file is not None:
60
+ img = load_image(img_path, img_size)
61
+ pred = model.predict(img)
62
+ output = classes[round(pred[0][0])]
63
+ st.subheader(f"The image is {output}")
64
+ else:
65
+ st.write("Please upload an image first")
66
+
67
+ # st.image(file)