Spaces:
Sleeping
Sleeping
File size: 16,305 Bytes
e0387e9 d9b56f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
library(shiny)
library(shinyjs)
library(bslib)
library(dplyr)
library(ggplot2)
library(readxl)
library(htmlwidgets)
library(shinydashboard)
library(neuralnet)
library(rsample)
options(width = 150)
options(digits = 4, scipen = 1000000000)
options(shiny.maxRequestSize=30*1024^2)
ui <- fluidPage(
theme = bs_theme(version = 5, bootswatch = "spacelab"),
useShinyjs(), # Initialize shinyjs
titlePanel("PtteM Data Science"),
tags$head(tags$link(rel = "stylesheet", href="https://fonts.googleapis.com/css?family=Montserrat:100,300,400,700&display=swap"),
tags$style(HTML("
body, h1, h2, h3, h4, h5, h6, .nav, p, a, .shiny-input-container {
font-family: 'Montserrat'; /* Font type for the title attribute */
font-weight: 385;
color: #007c9e !important;
}
* {
font-family: 'Montserrat', sans-serif;
font-weight: 385;
color: #195576; /* Blue color */
}
body {
background-color: #f7f7f7; /* Light gray background */
}
.icon-btn {
border: 1px solid #0d6efd; /* Example border: solid, 2 pixels, #555 color */
border-radius: 15%; /* Circular border */
color: #00969e; /* Icon color */
font-family: 'Montserrat'; /* Font type for the title attribute */
font-weight: 385;
background-color: #f7f7f7;
padding: 125px; /* Space around the icon */
margin: 25px; /* Space around the button */
font-size: 24px; /* Icon size */
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.icon-btn:hover {
color: #00969e; /* Icon color on hover */
border-color: #007c9e;
background-color: #ebfbfd;/* Border color on hover */
}
/* Add custom styles here */
.shiny-input-container {
margin-bottom: 15px;
}
.box {
border: 1px solid #ddd;
padding: 20px;
border-radius: 50px;
margin-bottom: 200px;
gap: 200px;
align-items: center;
}
#statsTable_wrapper {
margin: 0 auto;
}
.shiny-output-error {
border: 1px solid #FF0000; /* Red border on error */
}
/* If you want to change the font size of the tooltip, you can add custom CSS for the 'title' attribute's default styling. */
"))),
tags$head(
# Include JavaScript to reload the page
tags$script(HTML("
document.addEventListener('DOMContentLoaded', function() {
document.getElementById('myElement').style.color = '#0d6efd'; // Change to your desired color
});
"))
),
tags$head(
tags$script(HTML("
function reloadPage() {
window.location.reload();
}
"))
),
# Refresh button that calls the JavaScript function
actionButton("refresh", "Refresh Analysis", onclick = "reloadPage();"),
# Help Text or Information for the user
helpText("Bu uygulama ile metin analizi başlığı altındaki veri bilimi fonksiyonlarına erişebilirsiniz."),
#Neural Networks
h2("Neural Networks Section"),
tabsetPanel(
tabPanel("Perceptron Model",
sidebarLayout(
sidebarPanel(
fileInput("perc_input", "Choose CSV/XLSX/XSX File", accept = c(".csv, .xlsx, .xsx")),
uiOutput("target_perc"), # Dynamically generate UI for selecting target variable
uiOutput("predictors_perc"), # Dynamically generate UI for selecting predictor variables
sliderInput("dataSplitperc",
"Data Split Ratio",
min = 0.1,
max = 0.9,
value = 0.7, # Default value, for instance, 70% for training and 30% for testing
step = 0.05,
ticks = FALSE,
animate = TRUE),
actionButton("train_perceptron", "Train Perceptron Model"),
HTML("<div>
<h2>Perceptron Modeli</h2>
<p>Perceptron modeli, doğrusal olarak ayrılabilir veri kümeleri için basit bir denetimli öğrenme algoritmasıdır. Bu model, girdi ve çıktılar arasındaki ilişkiyi öğrenmek için kullanılır ve sınıflandırma problemlerinde yaygın olarak tercih edilir.</p>
<h3>Kullanım Adımları:</h3>
<ol>
<li><strong>Veri Dosyası Yükleme:</strong> <code>fileInput</code> aracı ile CSV, XLSX veya XSX formatlarında veri dosyanızı yükleyin.</li>
<li><strong>Hedef ve Öngörücülerin Seçimi:</strong> Dinamik olarak oluşturulan UI üzerinden hedef değişken ve öngörücü değişken(ler)inizi seçin.</li>
<li><strong>Veri Bölme Oranı:</strong> <code>sliderInput</code> ile veri bölme oranını ayarlayın (örneğin, %70 eğitim, %30 test).</li>
<li><strong>Modeli Eğit:</strong> <code>Train Perceptron Model</code> butonu ile perceptron modelinizi eğitin.</li>
</ol>
<h3>Model Özeti ve Kullanıcı Etkileşimi:</h3>
<p>Kullanıcılar modeli eğittikten sonra, model özetini ve eğitim sonuçlarını görebilirler. Modelin performansı, çapraz doğrulama yöntemiyle değerlendirilir.</p>
<h3>Uygulama Alanları:</h3>
<p>Perceptron modeli, metin sınıflandırma, görüntü tanıma ve basit doğrusal ayrım gerektiren diğer makine öğrenmesi görevlerinde kullanılabilir.</p>
<h3>Sonuçların Yorumlanması:</h3>
<p>Eğitilen modelin başarısı, doğruluk oranı ve diğer performans metrikleriyle değerlendirilir. Modelin ayrıntılı özetinde, ağırlıklar, yanlılık ve öğrenme oranı gibi parametreler gösterilir.</p>
</div>")
),
mainPanel(
tabsetPanel(
tabPanel("Model Summary",verbatimTextOutput("model_summary")),
)
)
)
),
tabPanel("Multilayer Perceptron",
sidebarLayout(
sidebarPanel(
fileInput("mlp_fileInput", "Choose CSV/XLSX/XSX File", accept = c(".csv", ".xlsx", ".xsx")),
uiOutput("mlp_preprocessUI"),
numericInput("mlp_hiddenLayers", "Number of Hidden Layers", value = 1),
numericInput("mlp_neurons", "Neurons in Hidden Layer", value = 5),
numericInput("mlp_epochs", "Number of Epochs", value = 100),
actionButton("mlp_trainButton", "Train MLP Model"),
HTML("<div>
<h2>Çok Katmanlı Perseptron Modeli</h2>
<p>Çok katmanlı perseptron modeli, derin öğrenme ve yapay sinir ağlarının temel yapı taşlarından biridir. Bu model, karmaşık veri yapılarını öğrenebilme ve tahmin etme yeteneğiyle ön plana çıkar.</p>
<h3>Kullanım Adımları:</h3>
<ol>
<li><strong>Veri Dosyası Yükleme:</strong> <code>fileInput</code> aracı ile CSV, XLSX veya XSX formatlarında veri dosyanızı yükleyin.</li>
<li><strong>Ön İşleme ve Değişken Seçimi:</strong> Dinamik olarak oluşturulan UI üzerinden hedef değişken, öngörücü değişken(ler) ve koşullu değişken seçin.</li>
<li><strong>Model Parametreleri:</strong> Gizli katman sayısı, bir gizli katmandaki nöron sayısı ve dönem sayısı gibi model parametrelerini ayarlayın.</li>
<li><strong>Modeli Eğit:</strong> <code>Train MLP Model</code> butonu ile çok katmanlı perceptron modelinizi eğitin.</li>
</ol>
<h3>Model Çıktısı ve Değerlendirme:</h3>
<p>Model eğitimi tamamlandıktan sonra, eğitim sürecini ve modelin performansını gösteren grafikler ve özet metinler kullanıcıya sunulur. Model, verilen parametrelere göre en iyi yapılandırmayı öğrenmeye çalışır.</p>
<h3>Uygulama Alanları:</h3>
<p>Çok katmanlı perseptron modelleri, görüntü ve ses işleme, metin sınıflandırma ve finansal tahminler gibi geniş bir uygulama alanına sahiptir.</p>
<h3>Sonuçların Yorumlanması:</h3>
<p>Modelin başarımı, hata oranları, adım sayısı ve ağırlık dağılımları üzerinden değerlendirilir. Eğitim sürecinde elde edilen ağırlık değerleri, modelin öğrenme kapasitesini ve veri üzerindeki genelleme yeteneğini gösterir. Ayrıca, modelin gerçek dünya verileri üzerindeki performansını test etmek için ayrı bir test veri seti kullanılması önerilir.</p>
</div>"),
),
mainPanel(
tabsetPanel(
tabPanel("Multilayer Output", plotOutput("mlp_trainingPlot", width = "100%", height = "700px")),
tabPanel("Evaluation", verbatimTextOutput("mlp_evaluation")),
tabPanel("GW Plot", plotOutput("mlp_gwplot", width = "100%", height = "700px"))
)
)
)
),
)
)
server <- function(input, output, session) {
read_data <- function(filepath) {
ext <- tools::file_ext(filepath)
if (ext == "csv") {
read.csv(filepath, stringsAsFactors = FALSE)
} else if (ext == "xlsx") {
readxl::read_excel(filepath)
} else {
stop("Invalid file format. Please select a CSV or XLSX file.")
}
}
clean_column_names <- function(dataframe) {
colnames(dataframe) <- gsub("[^[:alnum:]_]", "", make.names(colnames(dataframe), unique = TRUE))
return(dataframe)
}
##Neural Networks
###Perceptron
# Reactive expression to read and preprocess the dataset
dataperc <- reactive({
req(input$perc_input)
inFile <- input$perc_input
# Read the file based on its type
if (grepl("\\.csv$", inFile$name)) {
data <- read.csv(inFile$datapath, stringsAsFactors = FALSE)
} else if (grepl("\\.(xlsx|xls)$", inFile$name)) {
data <- readxl::read_xlsx(inFile$datapath)
} else {
stop("Unsupported file type")
}
# Clean up column names
names(data) <- make.names(names(data), unique = TRUE)
return(data)
})
# Generate UI for selecting the target variable
output$target_perc <- renderUI({
req(dataperc()) # Ensure data is loaded
# Create a list of UI elements to return
ui_elements <- tagList(
# Dropdown for selecting the target variable
selectInput("target_variable", "Select Target Variable", choices = names(dataperc())),
# Hint for the user with an emoji
tags$p(HTML("Please upload a categorical variable 🏀 💄 🍔 📱")) # Smiling face emoji
)
return(ui_elements)
})
# Generate UI for selecting predictor variables
output$predictors_perc <- renderUI({
req(dataperc())
selectInput("predictors", "Select Predictor Variables", multiple = TRUE, choices = names(dataperc()), selected = names(dataperc())[1])
})
# Train the Perceptron model
observeEvent(input$train_perceptron, {
req(dataperc(), input$target_variable, input$predictors)
data <- dataperc()
data <- na.omit(data)
# Ensure the target variable is a factor
data[[input$target_variable]] <- as.factor(data[[input$target_variable]])
#target_variable <- input$target_variable
#predictors <- input$predictors
# Split data into training and testing sets
set.seed(123)
split_ratio <- input$dataSplitperc
trainingIndex <- caret::createDataPartition(data[[input$target_variable]], p = split_ratio, list = FALSE)
trainingData <- data[trainingIndex, ]
testData <- data[-trainingIndex, ]
# Define control using a cross-validation approach
trainControl <- trainControl(method = "cv", number = 10)
# Assuming variable names are now valid R identifiers without special characters
formula <- as.formula(paste(input$target_variable, "~", paste(input$predictors, collapse = "+")))
perceptronModel <- caret::train(formula, data = trainingData, method = "lvq", preProcess = "scale", trControl = trainControl)
# Model summary
output$model_summary <- renderPrint({
perceptronModel
})
})
##Multiple Perceptron Model
# Reactive expression for data input
dataMLP <- reactive({
req(input$mlp_fileInput)
inFile <- input$mlp_fileInput
if (grepl("\\.csv$", inFile$name)) {
read.csv(inFile$datapath, stringsAsFactors = FALSE)
} else if (grepl("\\.(xlsx|xls)$", inFile$name)) {
readxl::read_xlsx(inFile$datapath)
} else {
stop("Unsupported file type")
}
})
output$mlp_preprocessUI <- renderUI({
req(dataMLP())
varNames <- names(dataMLP())
tagList(
selectInput("mlp_targetVariable", "Select Target Variable", choices = varNames),
selectInput("mlp_variables", "Select Predictor Variables", choices = varNames, multiple = TRUE),
selectInput("mlp_covariate", "Select Covariate Variable", choices = varNames),
tags$p(HTML("Please select Covariate Variable from Predictor Variables"))
)
})
observeEvent(input$mlp_trainButton, {
req(dataMLP(), input$mlp_targetVariable, input$mlp_variables)
data <- dataMLP()
data <- na.omit(data)
# Define the formula for the neural network
formula <- as.formula(paste(input$mlp_targetVariable, "~", paste(input$mlp_variables, collapse = "+")))
# Train the neural network model
nn <- neuralnet(formula, data, hidden = c(input$mlp_neurons), linear.output = FALSE, threshold = 0.01, stepmax = input$mlp_epochs)
# Plot the neural network
output$mlp_trainingPlot <- renderPlot({
plot(nn,rep = "best")
})
# Print the result matrix of the neural network
output$mlp_evaluation <- renderPrint({
print(nn$result.matrix)
# Neural Network Model Performance Summary
cat("\nNeural Network Model Performance Summary:\n")
# If the error is not within a reasonable range, you could give more context:
if (nn$result.matrix["error", ] > 200) {
cat("The model error of", nn$result.matrix["error", ], "is above the expected threshold. This may indicate that the model does not fit the data well. Consider collecting more data, feature engineering, or adjusting the model's complexity.\n")
} else {
cat("The model error of", nn$result.matrix["error", ], "is within the acceptable range, suggesting the model has learned the patterns from the data effectively.\n")
}
# Comment on the number of steps
cat("The model took", nn$result.matrix["steps", ], "steps to converge, which indicates ", ifelse(nn$result.matrix["steps", ] < 3000, "an efficient training process.", "that the maximum set steps were reached without sufficient convergence."), "\n")
# Comment on the weights
cat("The model's weights have been optimized through training. Each weight reflects the importance of the corresponding input feature for predicting the output. For instance, the weight for 'Price' to the first hidden neuron is", nn$result.matrix["Price.to.1layhid1", ], ".\n")
# Mention the threshold
cat("The threshold for stopping the training was set to", nn$result.matrix["reached.threshold", ], ", and the model reached an error close to this threshold, which is a good sign of model convergence.\n")
# Add a note on the usage of the model
cat("This trained model can now be used to make predictions on new data. It's important to validate the model's performance on a separate test set to ensure its predictive accuracy.\n")
})
output$mlp_gwplot <- renderPlot({
req(input$mlp_covariate) # Make sure input$mlp_variables is available
selected_var <- input$mlp_covariate # This should be a vector of selected variable names
if (length(selected_var) == 1) { # gwplot may only accept a single variable
gwplot(nn, selected.covariate = selected_var, min = -2.5, max = 5)
} else {
cat("Please select a single predictor variable to view its weight distribution.")
}
})
})
}
shinyApp(ui, server) |