Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import torch | |
import torchvision | |
from PIL import Image | |
from pytorch_lightning.callbacks import Callback | |
import pytorch_lightning as pl | |
from pytorch_lightning.utilities.distributed import rank_zero_only | |
from omegaconf import OmegaConf | |
# class ImageLogger(Callback): | |
# def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True, | |
# rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, | |
# log_images_kwargs=None): | |
# super().__init__() | |
# self.rescale = rescale | |
# self.batch_freq = batch_frequency | |
# self.max_images = max_images | |
# if not increase_log_steps: | |
# self.log_steps = [self.batch_freq] | |
# self.clamp = clamp | |
# self.disabled = disabled | |
# self.log_on_batch_idx = log_on_batch_idx | |
# self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} | |
# self.log_first_step = log_first_step | |
# @rank_zero_only | |
# def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): | |
# root = os.path.join(save_dir, "image_log", split) | |
# for k in images: | |
# grid = torchvision.utils.make_grid(images[k], nrow=4) | |
# if self.rescale: | |
# grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
# grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
# grid = grid.numpy() | |
# grid = (grid * 255).astype(np.uint8) | |
# filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) | |
# path = os.path.join(root, filename) | |
# os.makedirs(os.path.split(path)[0], exist_ok=True) | |
# Image.fromarray(grid).save(path) | |
# def log_img(self, pl_module, batch, batch_idx, split="train"): | |
# check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step | |
# if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 | |
# hasattr(pl_module, "log_images") and | |
# callable(pl_module.log_images) and | |
# self.max_images > 0): | |
# logger = type(pl_module.logger) | |
# is_train = pl_module.training | |
# if is_train: | |
# pl_module.eval() | |
# with torch.no_grad(): | |
# images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) | |
# for k in images: | |
# N = min(images[k].shape[0], self.max_images) | |
# images[k] = images[k][:N] | |
# if isinstance(images[k], torch.Tensor): | |
# images[k] = images[k].detach().cpu() | |
# if self.clamp: | |
# images[k] = torch.clamp(images[k], -1., 1.) | |
# self.log_local(pl_module.logger.save_dir, split, images, | |
# pl_module.global_step, pl_module.current_epoch, batch_idx) | |
# if is_train: | |
# pl_module.train() | |
# def check_frequency(self, check_idx): | |
# return check_idx % self.batch_freq == 0 | |
# def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
# if not self.disabled: | |
# self.log_img(pl_module, batch, batch_idx, split="train") | |
class SetupCallback(Callback): | |
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config): | |
super().__init__() | |
self.resume = resume | |
self.now = now | |
self.logdir = logdir | |
self.ckptdir = ckptdir | |
self.cfgdir = cfgdir | |
self.config = config | |
self.lightning_config = lightning_config | |
def on_keyboard_interrupt(self, trainer, pl_module): | |
if trainer.global_rank == 0: | |
print("Summoning checkpoint.") | |
ckpt_path = os.path.join(self.ckptdir, "last.ckpt") | |
trainer.save_checkpoint(ckpt_path) | |
def on_pretrain_routine_start(self, trainer, pl_module): | |
if trainer.global_rank == 0: | |
# Create logdirs and save configs | |
os.makedirs(self.logdir, exist_ok=True) | |
os.makedirs(self.ckptdir, exist_ok=True) | |
os.makedirs(self.cfgdir, exist_ok=True) | |
if "callbacks" in self.lightning_config: | |
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']: | |
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True) | |
print("Project config") | |
print(OmegaConf.to_yaml(self.config)) | |
OmegaConf.save(self.config, | |
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) | |
print("Lightning config") | |
print(OmegaConf.to_yaml(self.lightning_config)) | |
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), | |
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) | |
# else: | |
# # ModelCheckpoint callback created log directory --- remove it | |
# if not self.resume and os.path.exists(self.logdir): | |
# dst, name = os.path.split(self.logdir) | |
# dst = os.path.join(dst, "child_runs", name) | |
# os.makedirs(os.path.split(dst)[0], exist_ok=True) | |
# try: | |
# os.rename(self.logdir, dst) | |
# except FileNotFoundError: | |
# pass | |
class ImageLogger(Callback): | |
def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True, | |
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, | |
log_images_kwargs=None): | |
super().__init__() | |
self.rescale = rescale | |
self.batch_freq = batch_frequency | |
self.max_images = max_images | |
self.logger_log_images = { | |
pl.loggers.TestTubeLogger: self._testtube, | |
} | |
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)] | |
if not increase_log_steps: | |
self.log_steps = [self.batch_freq] | |
self.clamp = clamp | |
self.disabled = disabled | |
self.log_on_batch_idx = log_on_batch_idx | |
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} | |
self.log_first_step = log_first_step | |
def _testtube(self, pl_module, images, batch_idx, split): | |
for k in images: | |
grid = torchvision.utils.make_grid(images[k]) | |
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
tag = f"{split}/{k}" | |
pl_module.logger.experiment.add_image( | |
tag, grid, | |
global_step=pl_module.global_step) | |
def log_local(self, save_dir, split, images, | |
global_step, current_epoch, batch_idx): | |
root = os.path.join(save_dir, "images", split) | |
for k in images: | |
grid = torchvision.utils.make_grid(images[k], nrow=4) | |
if self.rescale: | |
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
grid = grid.numpy() | |
grid = (grid * 255).astype(np.uint8) | |
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format( | |
k, | |
global_step, | |
current_epoch, | |
batch_idx) | |
path = os.path.join(root, filename) | |
os.makedirs(os.path.split(path)[0], exist_ok=True) | |
Image.fromarray(grid).save(path) | |
def log_img(self, pl_module, batch, batch_idx, split="train"): | |
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 | |
hasattr(pl_module, "log_images") and | |
callable(pl_module.log_images) and | |
self.max_images > 0): | |
logger = type(pl_module.logger) | |
is_train = pl_module.training | |
if is_train: | |
pl_module.eval() | |
with torch.no_grad(): | |
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) | |
for k in images: | |
N = min(images[k].shape[0], self.max_images) | |
images[k] = images[k][:N] | |
if isinstance(images[k], torch.Tensor): | |
images[k] = images[k].detach().cpu() | |
if self.clamp: | |
images[k] = torch.clamp(images[k], -1., 1.) | |
self.log_local(pl_module.logger.save_dir, split, images, | |
pl_module.global_step, pl_module.current_epoch, batch_idx) | |
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None) | |
logger_log_images(pl_module, images, pl_module.global_step, split) | |
if is_train: | |
pl_module.train() | |
def check_frequency(self, check_idx): | |
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
check_idx > 0 or self.log_first_step): | |
try: | |
self.log_steps.pop(0) | |
except IndexError as e: | |
print(e) | |
pass | |
return True | |
return False | |
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
self.log_img(pl_module, batch, batch_idx, split="train") | |
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
# if not self.disabled and pl_module.global_step > 0: | |
# self.log_img(pl_module, batch, batch_idx, split="val") | |
# if hasattr(pl_module, 'calibrate_grad_norm'): | |
# if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
# self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |
pass |