# Prepare Datasets for OneFormer - A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog) for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc). - This document explains how to setup the builtin datasets so they can be used by the above APIs. [Training OneFormer with Custom Datasets](https://github.com/SHI-Labs/OneFormer/tree/main/datasets/custom_datasets) gives a deeper dive on how to train OneFormer with custom datasets. - Detectron2 has builtin support for a few datasets. The datasets are assumed to exist in a directory specified by the environment variable `DETECTRON2_DATASETS`. Under this directory, detectron2 will look for datasets in the structure described below, if needed. ```text $DETECTRON2_DATASETS/ ADEChallengeData2016/ cityscapes/ coco/ mapillary_vistas/ ``` - You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`. If left unset, the default is `./datasets` relative to your current working directory. ## Expected dataset structure for [ADE20K](http://sceneparsing.csail.mit.edu/) ```text ADEChallengeData2016/ images/ annotations/ objectInfo150.txt # download instance annotation annotations_instance/ # generated by prepare_ade20k_sem_seg.py annotations_detectron2/ # below are generated by prepare_ade20k_pan_seg.py ade20k_panoptic_{train,val}.json ade20k_panoptic_{train,val}/ # below are generated by prepare_ade20k_ins_seg.py ade20k_instance_{train,val}.json ``` - Generate `annotations_detectron2`: ```bash python datasets/prepare_ade20k_sem_seg.py ``` - Install panopticapi by: ```bash pip install git+https://github.com/cocodataset/panopticapi.git ``` - Download the instance annotation from : ```bash wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar ``` - Then, run `python datasets/prepare_ade20k_pan_seg.py`, to combine semantic and instance annotations for panoptic annotations. - Run `python datasets/prepare_ade20k_ins_seg.py`, to extract instance annotations in COCO format. ## Expected dataset structure for [Cityscapes](https://www.cityscapes-dataset.com/downloads/) ```text cityscapes/ gtFine/ train/ aachen/ color.png, instanceIds.png, labelIds.png, polygons.json, labelTrainIds.png ... val/ test/ # below are generated Cityscapes panoptic annotation cityscapes_panoptic_train.json cityscapes_panoptic_train/ cityscapes_panoptic_val.json cityscapes_panoptic_val/ cityscapes_panoptic_test.json cityscapes_panoptic_test/ leftImg8bit/ train/ val/ test/ ``` - Login and download the dataset ```bash wget --keep-session-cookies --save-cookies=cookies.txt --post-data 'username=myusername&password=mypassword&submit=Login' https://www.cityscapes-dataset.com/login/ ######## gtFine wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=1 ######## leftImg8bit wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3 ``` - Install cityscapes scripts by: ```bash pip install git+https://github.com/mcordts/cityscapesScripts.git ``` - To create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with: ```bash git clone https://github.com/mcordts/cityscapesScripts.git ``` ```bash CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesScripts/cityscapesscripts/preparation/createTrainIdLabelImgs.py ``` These files are not needed for instance segmentation. - To generate Cityscapes panoptic dataset, run cityscapesescript with: ```bash CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesScripts/cityscapesscripts/preparation/createPanopticImgs.py ``` These files are not needed for semantic and instance segmentation. ## Expected dataset structure for [COCO](https://cocodataset.org/#download) ```text coco/ annotations/ instances_{train,val}2017.json panoptic_{train,val}2017.json caption_{train,val}2017.json # evaluate on instance labels derived from panoptic annotations panoptic2instances_val2017.json {train,val}2017/ # image files that are mentioned in the corresponding json panoptic_{train,val}2017/ # png annotations panoptic_semseg_{train,val}2017/ # generated by the script mentioned below ``` - Install panopticapi by: ```bash pip install git+https://github.com/cocodataset/panopticapi.git ``` - Then, run `python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py`, to extract semantic annotations from panoptic annotations (only used for evaluation). - Then run the following command to convert the panoptic json into instance json format (used for evaluation on instance segmentation task): ```bash python datasets/panoptic2detection_coco_format.py --things_only ``` ## Expected dataset structure for [Mapillary Vistas](https://www.mapillary.com/dataset/vistas) ```text mapillary_vistas/ training/ images/ instances/ labels/ panoptic/ validation/ images/ instances/ labels/ panoptic/ mapillary_vistas_instance_{train,val}.json # generated by the script mentioned below ``` No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation. We do not evaluate for the instance segmentation task on the Mapillary Vistas dataset.