Spaces:
Runtime error
Runtime error
Back to diffusers 0.14.x
Browse files- model.py +17 -18
- requirements.txt +1 -1
- text_to_video_pipeline.py +504 -0
- utils.py +84 -1
model.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
from enum import Enum
|
2 |
import gc
|
3 |
import numpy as np
|
4 |
-
|
5 |
import torch
|
6 |
|
7 |
-
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel
|
8 |
from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler
|
9 |
-
from
|
10 |
|
11 |
import utils
|
12 |
import gradio_utils
|
@@ -32,18 +32,18 @@ class Model:
|
|
32 |
self.generator = torch.Generator(device=device)
|
33 |
self.pipe_dict = {
|
34 |
ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline,
|
35 |
-
ModelType.Text2Video:
|
36 |
ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
|
37 |
ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
|
38 |
ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
|
39 |
ModelType.ControlNetDepth: StableDiffusionControlNetPipeline,
|
40 |
}
|
41 |
-
self.controlnet_attn_proc = CrossFrameAttnProcessor(
|
42 |
-
|
43 |
-
self.pix2pix_attn_proc = CrossFrameAttnProcessor(
|
44 |
-
|
45 |
-
self.text2video_attn_proc = CrossFrameAttnProcessor(
|
46 |
-
|
47 |
|
48 |
self.pipe = None
|
49 |
self.model_type = None
|
@@ -58,7 +58,7 @@ class Model:
|
|
58 |
gc.collect()
|
59 |
safety_checker = kwargs.pop('safety_checker', None)
|
60 |
self.pipe = self.pipe_dict[model_type].from_pretrained(
|
61 |
-
model_id, safety_checker=safety_checker, **kwargs).to(self.device
|
62 |
self.model_type = model_type
|
63 |
self.model_name = model_id
|
64 |
|
@@ -86,13 +86,12 @@ class Model:
|
|
86 |
def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
|
87 |
if not hasattr(self, "pipe") or self.pipe is None:
|
88 |
return
|
89 |
-
|
90 |
if "merging_ratio" in kwargs:
|
91 |
merging_ratio = kwargs.pop("merging_ratio")
|
92 |
|
93 |
# if merging_ratio > 0:
|
94 |
tomesd.apply_patch(self.pipe, ratio=merging_ratio)
|
95 |
-
'''
|
96 |
seed = kwargs.pop('seed', 0)
|
97 |
if seed < 0:
|
98 |
seed = self.generator.seed()
|
@@ -480,19 +479,19 @@ class Model:
|
|
480 |
width=resolution,
|
481 |
num_inference_steps=50,
|
482 |
guidance_scale=7.5,
|
483 |
-
|
484 |
t0=t0,
|
485 |
t1=t1,
|
486 |
motion_field_strength_x=motion_field_strength_x,
|
487 |
motion_field_strength_y=motion_field_strength_y,
|
488 |
-
|
489 |
smooth_bg=smooth_bg,
|
490 |
smooth_bg_strength=smooth_bg_strength,
|
491 |
seed=seed,
|
492 |
output_type='numpy',
|
493 |
negative_prompt=negative_prompt,
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
)
|
498 |
return utils.create_video(result, fps, path=path, watermark=gradio_utils.logo_name_to_path(watermark))
|
|
|
1 |
from enum import Enum
|
2 |
import gc
|
3 |
import numpy as np
|
4 |
+
import tomesd
|
5 |
import torch
|
6 |
|
7 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel
|
8 |
from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler
|
9 |
+
from text_to_video_pipeline import TextToVideoPipeline
|
10 |
|
11 |
import utils
|
12 |
import gradio_utils
|
|
|
32 |
self.generator = torch.Generator(device=device)
|
33 |
self.pipe_dict = {
|
34 |
ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline,
|
35 |
+
ModelType.Text2Video: TextToVideoPipeline,
|
36 |
ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
|
37 |
ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
|
38 |
ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
|
39 |
ModelType.ControlNetDepth: StableDiffusionControlNetPipeline,
|
40 |
}
|
41 |
+
self.controlnet_attn_proc = utils.CrossFrameAttnProcessor(
|
42 |
+
unet_chunk_size=2)
|
43 |
+
self.pix2pix_attn_proc = utils.CrossFrameAttnProcessor(
|
44 |
+
unet_chunk_size=3)
|
45 |
+
self.text2video_attn_proc = utils.CrossFrameAttnProcessor(
|
46 |
+
unet_chunk_size=2)
|
47 |
|
48 |
self.pipe = None
|
49 |
self.model_type = None
|
|
|
58 |
gc.collect()
|
59 |
safety_checker = kwargs.pop('safety_checker', None)
|
60 |
self.pipe = self.pipe_dict[model_type].from_pretrained(
|
61 |
+
model_id, safety_checker=safety_checker, **kwargs).to(self.device).to(self.dtype)
|
62 |
self.model_type = model_type
|
63 |
self.model_name = model_id
|
64 |
|
|
|
86 |
def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
|
87 |
if not hasattr(self, "pipe") or self.pipe is None:
|
88 |
return
|
89 |
+
|
90 |
if "merging_ratio" in kwargs:
|
91 |
merging_ratio = kwargs.pop("merging_ratio")
|
92 |
|
93 |
# if merging_ratio > 0:
|
94 |
tomesd.apply_patch(self.pipe, ratio=merging_ratio)
|
|
|
95 |
seed = kwargs.pop('seed', 0)
|
96 |
if seed < 0:
|
97 |
seed = self.generator.seed()
|
|
|
479 |
width=resolution,
|
480 |
num_inference_steps=50,
|
481 |
guidance_scale=7.5,
|
482 |
+
guidance_stop_step=1.0,
|
483 |
t0=t0,
|
484 |
t1=t1,
|
485 |
motion_field_strength_x=motion_field_strength_x,
|
486 |
motion_field_strength_y=motion_field_strength_y,
|
487 |
+
use_motion_field=use_motion_field,
|
488 |
smooth_bg=smooth_bg,
|
489 |
smooth_bg_strength=smooth_bg_strength,
|
490 |
seed=seed,
|
491 |
output_type='numpy',
|
492 |
negative_prompt=negative_prompt,
|
493 |
+
merging_ratio=merging_ratio,
|
494 |
+
split_to_chunks=True,
|
495 |
+
chunk_size=chunk_size,
|
496 |
)
|
497 |
return utils.create_video(result, fps, path=path, watermark=gradio_utils.logo_name_to_path(watermark))
|
requirements.txt
CHANGED
@@ -3,7 +3,7 @@ addict==2.4.0
|
|
3 |
albumentations==1.3.0
|
4 |
basicsr==1.4.2
|
5 |
decord==0.6.0
|
6 |
-
diffusers==0.
|
7 |
einops==0.6.0
|
8 |
gradio==3.23.0
|
9 |
kornia==0.6
|
|
|
3 |
albumentations==1.3.0
|
4 |
basicsr==1.4.2
|
5 |
decord==0.6.0
|
6 |
+
diffusers==0.14.0
|
7 |
einops==0.6.0
|
8 |
gradio==3.23.0
|
9 |
kornia==0.6
|
text_to_video_pipeline.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline
|
2 |
+
import torch
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
import numpy as np
|
6 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from torch.nn.functional import grid_sample
|
9 |
+
import torchvision.transforms as T
|
10 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
14 |
+
import PIL
|
15 |
+
from PIL import Image
|
16 |
+
from kornia.morphology import dilation
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class TextToVideoPipelineOutput(BaseOutput):
|
21 |
+
# videos: Union[torch.Tensor, np.ndarray]
|
22 |
+
# code: Union[torch.Tensor, np.ndarray]
|
23 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
24 |
+
nsfw_content_detected: Optional[List[bool]]
|
25 |
+
|
26 |
+
|
27 |
+
def coords_grid(batch, ht, wd, device):
|
28 |
+
# Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
|
29 |
+
coords = torch.meshgrid(torch.arange(
|
30 |
+
ht, device=device), torch.arange(wd, device=device))
|
31 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
32 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
33 |
+
|
34 |
+
|
35 |
+
class TextToVideoPipeline(StableDiffusionPipeline):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vae: AutoencoderKL,
|
39 |
+
text_encoder: CLIPTextModel,
|
40 |
+
tokenizer: CLIPTokenizer,
|
41 |
+
unet: UNet2DConditionModel,
|
42 |
+
scheduler: KarrasDiffusionSchedulers,
|
43 |
+
safety_checker: StableDiffusionSafetyChecker,
|
44 |
+
feature_extractor: CLIPFeatureExtractor,
|
45 |
+
requires_safety_checker: bool = True,
|
46 |
+
):
|
47 |
+
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
|
48 |
+
safety_checker, feature_extractor, requires_safety_checker)
|
49 |
+
|
50 |
+
def DDPM_forward(self, x0, t0, tMax, generator, device, shape, text_embeddings):
|
51 |
+
rand_device = "cpu" if device.type == "mps" else device
|
52 |
+
|
53 |
+
if x0 is None:
|
54 |
+
return torch.randn(shape, generator=generator, device=rand_device, dtype=text_embeddings.dtype).to(device)
|
55 |
+
else:
|
56 |
+
eps = torch.randn(x0.shape, dtype=text_embeddings.dtype, generator=generator,
|
57 |
+
device=rand_device)
|
58 |
+
alpha_vec = torch.prod(self.scheduler.alphas[t0:tMax])
|
59 |
+
|
60 |
+
xt = torch.sqrt(alpha_vec) * x0 + \
|
61 |
+
torch.sqrt(1-alpha_vec) * eps
|
62 |
+
return xt
|
63 |
+
|
64 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
65 |
+
shape = (batch_size, num_channels_latents, video_length, height //
|
66 |
+
self.vae_scale_factor, width // self.vae_scale_factor)
|
67 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
68 |
+
raise ValueError(
|
69 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
70 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
71 |
+
)
|
72 |
+
|
73 |
+
if latents is None:
|
74 |
+
rand_device = "cpu" if device.type == "mps" else device
|
75 |
+
|
76 |
+
if isinstance(generator, list):
|
77 |
+
shape = (1,) + shape[1:]
|
78 |
+
latents = [
|
79 |
+
torch.randn(
|
80 |
+
shape, generator=generator[i], device=rand_device, dtype=dtype)
|
81 |
+
for i in range(batch_size)
|
82 |
+
]
|
83 |
+
latents = torch.cat(latents, dim=0).to(device)
|
84 |
+
else:
|
85 |
+
latents = torch.randn(
|
86 |
+
shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
87 |
+
else:
|
88 |
+
latents = latents.to(device)
|
89 |
+
|
90 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
91 |
+
latents = latents * self.scheduler.init_noise_sigma
|
92 |
+
return latents
|
93 |
+
|
94 |
+
def warp_latents_independently(self, latents, reference_flow):
|
95 |
+
_, _, H, W = reference_flow.size()
|
96 |
+
b, _, f, h, w = latents.size()
|
97 |
+
assert b == 1
|
98 |
+
coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
|
99 |
+
|
100 |
+
coords_t0 = coords0 + reference_flow
|
101 |
+
coords_t0[:, 0] /= W
|
102 |
+
coords_t0[:, 1] /= H
|
103 |
+
|
104 |
+
coords_t0 = coords_t0 * 2.0 - 1.0
|
105 |
+
|
106 |
+
coords_t0 = T.Resize((h, w))(coords_t0)
|
107 |
+
|
108 |
+
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
|
109 |
+
|
110 |
+
latents_0 = rearrange(latents[0], 'c f h w -> f c h w')
|
111 |
+
warped = grid_sample(latents_0, coords_t0,
|
112 |
+
mode='nearest', padding_mode='reflection')
|
113 |
+
|
114 |
+
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
|
115 |
+
return warped
|
116 |
+
|
117 |
+
def DDIM_backward(self, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, null_embs, text_embeddings, latents_local,
|
118 |
+
latents_dtype, guidance_scale, guidance_stop_step, callback, callback_steps, extra_step_kwargs, num_warmup_steps):
|
119 |
+
entered = False
|
120 |
+
|
121 |
+
f = latents_local.shape[2]
|
122 |
+
|
123 |
+
latents_local = rearrange(latents_local, "b c f w h -> (b f) c w h")
|
124 |
+
|
125 |
+
latents = latents_local.detach().clone()
|
126 |
+
x_t0_1 = None
|
127 |
+
x_t1_1 = None
|
128 |
+
|
129 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
130 |
+
for i, t in enumerate(timesteps):
|
131 |
+
if t > skip_t:
|
132 |
+
continue
|
133 |
+
else:
|
134 |
+
if not entered:
|
135 |
+
print(
|
136 |
+
f"Continue DDIM with i = {i}, t = {t}, latent = {latents.shape}, device = {latents.device}, type = {latents.dtype}")
|
137 |
+
entered = True
|
138 |
+
|
139 |
+
latents = latents.detach()
|
140 |
+
# expand the latents if we are doing classifier free guidance
|
141 |
+
latent_model_input = torch.cat(
|
142 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
143 |
+
latent_model_input = self.scheduler.scale_model_input(
|
144 |
+
latent_model_input, t)
|
145 |
+
|
146 |
+
# predict the noise residual
|
147 |
+
with torch.no_grad():
|
148 |
+
if null_embs is not None:
|
149 |
+
text_embeddings[0] = null_embs[i][0]
|
150 |
+
te = torch.cat([repeat(text_embeddings[0, :, :], "c k -> f c k", f=f),
|
151 |
+
repeat(text_embeddings[1, :, :], "c k -> f c k", f=f)])
|
152 |
+
noise_pred = self.unet(
|
153 |
+
latent_model_input, t, encoder_hidden_states=te).sample.to(dtype=latents_dtype)
|
154 |
+
|
155 |
+
# perform guidance
|
156 |
+
if do_classifier_free_guidance:
|
157 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(
|
158 |
+
2)
|
159 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
160 |
+
(noise_pred_text - noise_pred_uncond)
|
161 |
+
|
162 |
+
if i >= guidance_stop_step * len(timesteps):
|
163 |
+
alpha = 0
|
164 |
+
# compute the previous noisy sample x_t -> x_t-1
|
165 |
+
latents = self.scheduler.step(
|
166 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
167 |
+
# latents = latents - alpha * grads / (torch.norm(grads) + 1e-10)
|
168 |
+
# call the callback, if provided
|
169 |
+
|
170 |
+
if i < len(timesteps)-1 and timesteps[i+1] == t0:
|
171 |
+
x_t0_1 = latents.detach().clone()
|
172 |
+
print(f"latent t0 found at i = {i}, t = {t}")
|
173 |
+
elif i < len(timesteps)-1 and timesteps[i+1] == t1:
|
174 |
+
x_t1_1 = latents.detach().clone()
|
175 |
+
print(f"latent t1 found at i={i}, t = {t}")
|
176 |
+
|
177 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
178 |
+
progress_bar.update()
|
179 |
+
if callback is not None and i % callback_steps == 0:
|
180 |
+
callback(i, t, latents)
|
181 |
+
|
182 |
+
latents = rearrange(latents, "(b f) c w h -> b c f w h", f=f)
|
183 |
+
|
184 |
+
res = {"x0": latents.detach().clone()}
|
185 |
+
if x_t0_1 is not None:
|
186 |
+
x_t0_1 = rearrange(x_t0_1, "(b f) c w h -> b c f w h", f=f)
|
187 |
+
res["x_t0_1"] = x_t0_1.detach().clone()
|
188 |
+
if x_t1_1 is not None:
|
189 |
+
x_t1_1 = rearrange(x_t1_1, "(b f) c w h -> b c f w h", f=f)
|
190 |
+
res["x_t1_1"] = x_t1_1.detach().clone()
|
191 |
+
return res
|
192 |
+
|
193 |
+
def decode_latents(self, latents):
|
194 |
+
video_length = latents.shape[2]
|
195 |
+
latents = 1 / 0.18215 * latents
|
196 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
197 |
+
video = self.vae.decode(latents).sample
|
198 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
199 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
200 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
201 |
+
video = video.detach().cpu()
|
202 |
+
return video
|
203 |
+
|
204 |
+
def create_motion_field(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
|
205 |
+
|
206 |
+
reference_flow = torch.zeros(
|
207 |
+
(video_length-1, 2, 512, 512), device=latents.device, dtype=latents.dtype)
|
208 |
+
for fr_idx, frame_id in enumerate(frame_ids):
|
209 |
+
reference_flow[fr_idx, 0, :,
|
210 |
+
:] = motion_field_strength_x*(frame_id)
|
211 |
+
reference_flow[fr_idx, 1, :,
|
212 |
+
:] = motion_field_strength_y*(frame_id)
|
213 |
+
return reference_flow
|
214 |
+
|
215 |
+
def create_motion_field_and_warp_latents(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
|
216 |
+
|
217 |
+
motion_field = self.create_motion_field(motion_field_strength_x=motion_field_strength_x,
|
218 |
+
motion_field_strength_y=motion_field_strength_y, latents=latents, video_length=video_length, frame_ids=frame_ids)
|
219 |
+
for idx, latent in enumerate(latents):
|
220 |
+
latents[idx] = self.warp_latents_independently(
|
221 |
+
latent[None], motion_field)
|
222 |
+
return motion_field, latents
|
223 |
+
|
224 |
+
@torch.no_grad()
|
225 |
+
def __call__(
|
226 |
+
self,
|
227 |
+
prompt: Union[str, List[str]],
|
228 |
+
video_length: Optional[int],
|
229 |
+
height: Optional[int] = None,
|
230 |
+
width: Optional[int] = None,
|
231 |
+
num_inference_steps: int = 50,
|
232 |
+
guidance_scale: float = 7.5,
|
233 |
+
guidance_stop_step: float = 0.5,
|
234 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
235 |
+
num_videos_per_prompt: Optional[int] = 1,
|
236 |
+
eta: float = 0.0,
|
237 |
+
generator: Optional[Union[torch.Generator,
|
238 |
+
List[torch.Generator]]] = None,
|
239 |
+
xT: Optional[torch.FloatTensor] = None,
|
240 |
+
null_embs: Optional[torch.FloatTensor] = None,
|
241 |
+
motion_field_strength_x: float = 12,
|
242 |
+
motion_field_strength_y: float = 12,
|
243 |
+
output_type: Optional[str] = "tensor",
|
244 |
+
return_dict: bool = True,
|
245 |
+
callback: Optional[Callable[[
|
246 |
+
int, int, torch.FloatTensor], None]] = None,
|
247 |
+
callback_steps: Optional[int] = 1,
|
248 |
+
use_motion_field: bool = True,
|
249 |
+
smooth_bg: bool = False,
|
250 |
+
smooth_bg_strength: float = 0.4,
|
251 |
+
t0: int = 44,
|
252 |
+
t1: int = 47,
|
253 |
+
**kwargs,
|
254 |
+
):
|
255 |
+
frame_ids = kwargs.pop("frame_ids", list(range(video_length)))
|
256 |
+
assert t0 < t1
|
257 |
+
assert num_videos_per_prompt == 1
|
258 |
+
assert isinstance(prompt, list) and len(prompt) > 0
|
259 |
+
assert isinstance(negative_prompt, list) or negative_prompt is None
|
260 |
+
|
261 |
+
prompt_types = [prompt, negative_prompt]
|
262 |
+
|
263 |
+
for idx, prompt_type in enumerate(prompt_types):
|
264 |
+
prompt_template = None
|
265 |
+
for prompt in prompt_type:
|
266 |
+
if prompt_template is None:
|
267 |
+
prompt_template = prompt
|
268 |
+
else:
|
269 |
+
assert prompt == prompt_template
|
270 |
+
if prompt_types[idx] is not None:
|
271 |
+
prompt_types[idx] = prompt_types[idx][0]
|
272 |
+
prompt = prompt_types[0]
|
273 |
+
negative_prompt = prompt_types[1]
|
274 |
+
|
275 |
+
# Default height and width to unet
|
276 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
277 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
278 |
+
|
279 |
+
# Check inputs. Raise error if not correct
|
280 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
281 |
+
|
282 |
+
# Define call parameters
|
283 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
284 |
+
device = self._execution_device
|
285 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
286 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
287 |
+
# corresponds to doing no classifier free guidance.
|
288 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
289 |
+
|
290 |
+
# Encode input prompt
|
291 |
+
text_embeddings = self._encode_prompt(
|
292 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
293 |
+
)
|
294 |
+
|
295 |
+
# Prepare timesteps
|
296 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
297 |
+
timesteps = self.scheduler.timesteps
|
298 |
+
|
299 |
+
# print(f" Latent shape = {latents.shape}")
|
300 |
+
|
301 |
+
# Prepare latent variables
|
302 |
+
num_channels_latents = self.unet.in_channels
|
303 |
+
|
304 |
+
xT = self.prepare_latents(
|
305 |
+
batch_size * num_videos_per_prompt,
|
306 |
+
num_channels_latents,
|
307 |
+
1,
|
308 |
+
height,
|
309 |
+
width,
|
310 |
+
text_embeddings.dtype,
|
311 |
+
device,
|
312 |
+
generator,
|
313 |
+
xT,
|
314 |
+
)
|
315 |
+
dtype = xT.dtype
|
316 |
+
|
317 |
+
# when motion field is not used, augment with random latent codes
|
318 |
+
if use_motion_field:
|
319 |
+
xT = xT[:, :, :1]
|
320 |
+
else:
|
321 |
+
if xT.shape[2] < video_length:
|
322 |
+
xT_missing = self.prepare_latents(
|
323 |
+
batch_size * num_videos_per_prompt,
|
324 |
+
num_channels_latents,
|
325 |
+
video_length-xT.shape[2],
|
326 |
+
height,
|
327 |
+
width,
|
328 |
+
text_embeddings.dtype,
|
329 |
+
device,
|
330 |
+
generator,
|
331 |
+
None,
|
332 |
+
)
|
333 |
+
xT = torch.cat([xT, xT_missing], dim=2)
|
334 |
+
|
335 |
+
xInit = xT.clone()
|
336 |
+
|
337 |
+
timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
|
338 |
+
701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
|
339 |
+
421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
|
340 |
+
141, 121, 101, 81, 61, 41, 21, 1]
|
341 |
+
timesteps_ddpm.reverse()
|
342 |
+
|
343 |
+
t0 = timesteps_ddpm[t0]
|
344 |
+
t1 = timesteps_ddpm[t1]
|
345 |
+
|
346 |
+
print(f"t0 = {t0} t1 = {t1}")
|
347 |
+
x_t1_1 = None
|
348 |
+
|
349 |
+
# Prepare extra step kwargs.
|
350 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
351 |
+
# Denoising loop
|
352 |
+
num_warmup_steps = len(timesteps) - \
|
353 |
+
num_inference_steps * self.scheduler.order
|
354 |
+
|
355 |
+
shape = (batch_size, num_channels_latents, 1, height //
|
356 |
+
self.vae_scale_factor, width // self.vae_scale_factor)
|
357 |
+
|
358 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
|
359 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=xT, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step,
|
360 |
+
callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
361 |
+
|
362 |
+
x0 = ddim_res["x0"].detach()
|
363 |
+
|
364 |
+
if "x_t0_1" in ddim_res:
|
365 |
+
x_t0_1 = ddim_res["x_t0_1"].detach()
|
366 |
+
if "x_t1_1" in ddim_res:
|
367 |
+
x_t1_1 = ddim_res["x_t1_1"].detach()
|
368 |
+
del ddim_res
|
369 |
+
del xT
|
370 |
+
if use_motion_field:
|
371 |
+
del x0
|
372 |
+
|
373 |
+
x_t0_k = x_t0_1[:, :, :1, :, :].repeat(1, 1, video_length-1, 1, 1)
|
374 |
+
|
375 |
+
reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
|
376 |
+
motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_t0_k, video_length=video_length, frame_ids=frame_ids[1:])
|
377 |
+
|
378 |
+
# assuming t0=t1=1000, if t0 = 1000
|
379 |
+
if t1 > t0:
|
380 |
+
x_t1_k = self.DDPM_forward(
|
381 |
+
x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
|
382 |
+
else:
|
383 |
+
x_t1_k = x_t0_k
|
384 |
+
|
385 |
+
if x_t1_1 is None:
|
386 |
+
raise Exception
|
387 |
+
|
388 |
+
x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2).clone().detach()
|
389 |
+
|
390 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
|
391 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale,
|
392 |
+
guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
393 |
+
|
394 |
+
x0 = ddim_res["x0"].detach()
|
395 |
+
del ddim_res
|
396 |
+
del x_t1
|
397 |
+
del x_t1_1
|
398 |
+
del x_t1_k
|
399 |
+
else:
|
400 |
+
x_t1 = x_t1_1.clone()
|
401 |
+
x_t1_1 = x_t1_1[:, :, :1, :, :].clone()
|
402 |
+
x_t1_k = x_t1_1[:, :, 1:, :, :].clone()
|
403 |
+
x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
|
404 |
+
x_t0_1 = x_t0_1[:, :, :1, :, :].clone()
|
405 |
+
|
406 |
+
# smooth background
|
407 |
+
if smooth_bg:
|
408 |
+
h, w = x0.shape[3], x0.shape[4]
|
409 |
+
M_FG = torch.zeros((batch_size, video_length, h, w),
|
410 |
+
device=x0.device).to(x0.dtype)
|
411 |
+
for batch_idx, x0_b in enumerate(x0):
|
412 |
+
z0_b = self.decode_latents(x0_b[None]).detach()
|
413 |
+
z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
|
414 |
+
for frame_idx, z0_f in enumerate(z0_b):
|
415 |
+
z0_f = torch.round(
|
416 |
+
z0_f * 255).cpu().numpy().astype(np.uint8)
|
417 |
+
# apply SOD detection
|
418 |
+
m_f = torch.tensor(self.sod_model.process_data(
|
419 |
+
z0_f), device=x0.device).to(x0.dtype)
|
420 |
+
mask = T.Resize(
|
421 |
+
size=(h, w), interpolation=T.InterpolationMode.NEAREST)(m_f[None])
|
422 |
+
kernel = torch.ones(5, 5, device=x0.device, dtype=x0.dtype)
|
423 |
+
mask = dilation(mask[None].to(x0.device), kernel)[0]
|
424 |
+
M_FG[batch_idx, frame_idx, :, :] = mask
|
425 |
+
|
426 |
+
x_t1_1_fg_masked = x_t1_1 * \
|
427 |
+
(1 - repeat(M_FG[:, 0, :, :],
|
428 |
+
"b w h -> b c 1 w h", c=x_t1_1.shape[1]))
|
429 |
+
|
430 |
+
x_t1_1_fg_masked_moved = []
|
431 |
+
for batch_idx, x_t1_1_fg_masked_b in enumerate(x_t1_1_fg_masked):
|
432 |
+
x_t1_fg_masked_b = x_t1_1_fg_masked_b.clone()
|
433 |
+
|
434 |
+
x_t1_fg_masked_b = x_t1_fg_masked_b.repeat(
|
435 |
+
1, video_length-1, 1, 1)
|
436 |
+
if use_motion_field:
|
437 |
+
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
|
438 |
+
x_t1_fg_masked_b = self.warp_latents_independently(
|
439 |
+
x_t1_fg_masked_b, reference_flow)
|
440 |
+
else:
|
441 |
+
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
|
442 |
+
|
443 |
+
x_t1_fg_masked_b = torch.cat(
|
444 |
+
[x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
|
445 |
+
x_t1_1_fg_masked_moved.append(x_t1_fg_masked_b)
|
446 |
+
|
447 |
+
x_t1_1_fg_masked_moved = torch.cat(x_t1_1_fg_masked_moved, dim=0)
|
448 |
+
|
449 |
+
M_FG_1 = M_FG[:, :1, :, :]
|
450 |
+
|
451 |
+
M_FG_warped = []
|
452 |
+
for batch_idx, m_fg_1_b in enumerate(M_FG_1):
|
453 |
+
m_fg_1_b = m_fg_1_b[None, None]
|
454 |
+
m_fg_b = m_fg_1_b.repeat(1, 1, video_length-1, 1, 1)
|
455 |
+
if use_motion_field:
|
456 |
+
m_fg_b = self.warp_latents_independently(
|
457 |
+
m_fg_b.clone(), reference_flow)
|
458 |
+
M_FG_warped.append(
|
459 |
+
torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))
|
460 |
+
|
461 |
+
M_FG_warped = torch.cat(M_FG_warped, dim=0)
|
462 |
+
|
463 |
+
channels = x0.shape[1]
|
464 |
+
|
465 |
+
M_BG = (1-M_FG) * (1 - M_FG_warped)
|
466 |
+
M_BG = repeat(M_BG, "b f h w -> b c f h w", c=channels)
|
467 |
+
a_convex = smooth_bg_strength
|
468 |
+
|
469 |
+
latents = (1-M_BG) * x_t1 + M_BG * (a_convex *
|
470 |
+
x_t1 + (1-a_convex) * x_t1_1_fg_masked_moved)
|
471 |
+
|
472 |
+
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
|
473 |
+
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=latents, latents_dtype=dtype, guidance_scale=guidance_scale,
|
474 |
+
guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
|
475 |
+
x0 = ddim_res["x0"].detach()
|
476 |
+
del ddim_res
|
477 |
+
del latents
|
478 |
+
|
479 |
+
latents = x0
|
480 |
+
|
481 |
+
# manually for max memory savings
|
482 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
483 |
+
self.unet.to("cpu")
|
484 |
+
torch.cuda.empty_cache()
|
485 |
+
|
486 |
+
if output_type == "latent":
|
487 |
+
image = latents
|
488 |
+
has_nsfw_concept = None
|
489 |
+
else:
|
490 |
+
image = self.decode_latents(latents)
|
491 |
+
|
492 |
+
# Run safety checker
|
493 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
494 |
+
image, device, text_embeddings.dtype)
|
495 |
+
image = rearrange(image, "b c f h w -> (b f) h w c")
|
496 |
+
|
497 |
+
# Offload last model to CPU
|
498 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
499 |
+
self.final_offload_hook.offload()
|
500 |
+
|
501 |
+
if not return_dict:
|
502 |
+
return (image, has_nsfw_concept)
|
503 |
+
|
504 |
+
return TextToVideoPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
utils.py
CHANGED
@@ -133,6 +133,40 @@ def create_gif(frames, fps, rescale=False, path=None, watermark=None):
|
|
133 |
imageio.mimsave(path, outputs, fps=fps)
|
134 |
return path
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
|
137 |
vr = decord.VideoReader(video_path)
|
138 |
initial_fps = vr.get_avg_fps()
|
@@ -178,8 +212,57 @@ def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True,
|
|
178 |
|
179 |
return video, output_fps
|
180 |
|
181 |
-
|
182 |
def post_process_gif(list_of_results, image_resolution):
|
183 |
output_file = "/tmp/ddxk.gif"
|
184 |
imageio.mimsave(output_file, list_of_results, fps=4)
|
185 |
return output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
imageio.mimsave(path, outputs, fps=fps)
|
134 |
return path
|
135 |
|
136 |
+
# def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
|
137 |
+
# vr = decord.VideoReader(video_path)
|
138 |
+
# video = vr.get_batch(range(0, len(vr))).asnumpy()
|
139 |
+
# initial_fps = vr.get_avg_fps()
|
140 |
+
# if output_fps == -1:
|
141 |
+
# output_fps = int(initial_fps)
|
142 |
+
# if end_t == -1:
|
143 |
+
# end_t = len(vr) / initial_fps
|
144 |
+
# else:
|
145 |
+
# end_t = min(len(vr) / initial_fps, end_t)
|
146 |
+
# assert 0 <= start_t < end_t
|
147 |
+
# assert output_fps > 0
|
148 |
+
# f, h, w, c = video.shape
|
149 |
+
# start_f_ind = int(start_t * initial_fps)
|
150 |
+
# end_f_ind = int(end_t * initial_fps)
|
151 |
+
# num_f = int((end_t - start_t) * output_fps)
|
152 |
+
# sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
|
153 |
+
# video = video[sample_idx]
|
154 |
+
# video = rearrange(video, "f h w c -> f c h w")
|
155 |
+
# video = torch.Tensor(video).to(device).to(dtype)
|
156 |
+
# if h > w:
|
157 |
+
# w = int(w * resolution / h)
|
158 |
+
# w = w - w % 8
|
159 |
+
# h = resolution - resolution % 8
|
160 |
+
# video = Resize((h, w))(video)
|
161 |
+
# else:
|
162 |
+
# h = int(h * resolution / w)
|
163 |
+
# h = h - h % 8
|
164 |
+
# w = resolution - resolution % 8
|
165 |
+
# video = Resize((h, w))(video)
|
166 |
+
# if normalize:
|
167 |
+
# video = video / 127.5 - 1.0
|
168 |
+
# return video, output_fps
|
169 |
+
|
170 |
def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
|
171 |
vr = decord.VideoReader(video_path)
|
172 |
initial_fps = vr.get_avg_fps()
|
|
|
212 |
|
213 |
return video, output_fps
|
214 |
|
|
|
215 |
def post_process_gif(list_of_results, image_resolution):
|
216 |
output_file = "/tmp/ddxk.gif"
|
217 |
imageio.mimsave(output_file, list_of_results, fps=4)
|
218 |
return output_file
|
219 |
+
|
220 |
+
|
221 |
+
class CrossFrameAttnProcessor:
|
222 |
+
def __init__(self, unet_chunk_size=2):
|
223 |
+
self.unet_chunk_size = unet_chunk_size
|
224 |
+
|
225 |
+
def __call__(
|
226 |
+
self,
|
227 |
+
attn,
|
228 |
+
hidden_states,
|
229 |
+
encoder_hidden_states=None,
|
230 |
+
attention_mask=None):
|
231 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
232 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
233 |
+
query = attn.to_q(hidden_states)
|
234 |
+
|
235 |
+
is_cross_attention = encoder_hidden_states is not None
|
236 |
+
if encoder_hidden_states is None:
|
237 |
+
encoder_hidden_states = hidden_states
|
238 |
+
elif attn.cross_attention_norm:
|
239 |
+
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
|
240 |
+
key = attn.to_k(encoder_hidden_states)
|
241 |
+
value = attn.to_v(encoder_hidden_states)
|
242 |
+
# Sparse Attention
|
243 |
+
if not is_cross_attention:
|
244 |
+
video_length = key.size()[0] // self.unet_chunk_size
|
245 |
+
# former_frame_index = torch.arange(video_length) - 1
|
246 |
+
# former_frame_index[0] = 0
|
247 |
+
former_frame_index = [0] * video_length
|
248 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
249 |
+
key = key[:, former_frame_index]
|
250 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
251 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
252 |
+
value = value[:, former_frame_index]
|
253 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
254 |
+
|
255 |
+
query = attn.head_to_batch_dim(query)
|
256 |
+
key = attn.head_to_batch_dim(key)
|
257 |
+
value = attn.head_to_batch_dim(value)
|
258 |
+
|
259 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
260 |
+
hidden_states = torch.bmm(attention_probs, value)
|
261 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
262 |
+
|
263 |
+
# linear proj
|
264 |
+
hidden_states = attn.to_out[0](hidden_states)
|
265 |
+
# dropout
|
266 |
+
hidden_states = attn.to_out[1](hidden_states)
|
267 |
+
|
268 |
+
return hidden_states
|