import spaces import gradio as gr import torch from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer from string import punctuation import re from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed device = "cuda:0" if torch.cuda.is_available() else "cpu" repo_id = "PHBJT/french_parler_tts_mini_v0.1" model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." default_description = "A male voice speaks slowly with a very noisy background, displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue." examples = [ [ "La voix humaine est un instrument de musique au-dessus de tous les autres.", "A male voice speaks slowly with a very noisy background, displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue.", None, ], [ "Tout ce qu'un homme est capable d'imaginer, d'autres hommes seront capables de le réaliser.", "A male voice delivers a slightly expressive and animated speech with a moderate speed. The recording features a low-pitch voice, creating a close-sounding audio experience.", None, ], [ "La machine elle-même, si perfectionnée qu'on la suppose, n'est qu'un outil.", "A male voice provides a monotone yet slightly fast delivery, with a very close recording that almost has no background noise.", None, ], [ "Le progrès fait naître plus de besoins qu'il n'en satisfait.", "A female voice, in a very poor recording quality, delivers slightly expressive and animated words with a fast pace. There's a high level of background noise and a very distant-sounding reverberation. The voice is slightly higher pitched than average.", None, ], ] number_normalizer = EnglishNumberNormalizer() def preprocess(text): text = number_normalizer(text).strip() text = text.replace("-", " ") if text[-1] not in punctuation: text = f"{text}." abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' def separate_abb(chunk): chunk = chunk.replace(".","") print(chunk) return " ".join(chunk) abbreviations = re.findall(abbreviations_pattern, text) for abv in abbreviations: if abv in text: text = text.replace(abv, separate_abb(abv)) return text @spaces.GPU def gen_tts(text, description): inputs = tokenizer(description.strip(), return_tensors="pt").to(device) prompt = tokenizer(preprocess(text), return_tensors="pt").to(device) set_seed(SEED) generation = model.generate( input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0 ) audio_arr = generation.cpu().numpy().squeeze() return SAMPLE_RATE, audio_arr css = """ #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; flex: unset !important; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor: pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; right:0; } #share-btn * { all: unset !important; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } """ with gr.Blocks(css=css) as block: gr.HTML( """

French Parler-TTS 🗣️

""" ) gr.HTML( f"""

Parler-TTS is a training and inference library for high-fidelity text-to-speech (TTS) models.

The model demonstrated here, French Parler-TTS Mini v0.1 French, has been fine-tuned on a French dataset. It generates high-quality speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). Due to limitations on the dataset, this model might underperform for female voices (we recommend using male voices only).

By default, Parler-TTS generates 🎲 random male voice characteristics. To ensure 🎯 speaker consistency across generations, try to use consistent descriptions in your prompts.

Note: do NOT specify the nationnality of the speaker it will cause inconsistent audio generation (do: "a male speaker", don't: "a french male speaker")

Important note: this model does NOT work in english, it will generate incoherent audios. But you can still use the original Parler TTS model for that.

""" ) with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description") run_button = gr.Button("Generate Audio", variant="primary") with gr.Column(): audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out", autoplay = True) inputs = [input_text, description] outputs = [audio_out] run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True) gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True) gr.HTML( """

Tips for ensuring good generation:

""" ) block.queue() block.launch(share=True)