Spaces:
Runtime error
Runtime error
import subprocess | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
ABOUT_TEXT, | |
SUBMIT_CHALLENGE_TEXT, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
COLS_PAIRED, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
AlgoType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DATA_REPO, REPO_ID, TOKEN, REQUESTS_REPO_PATH, RESULTS_REPO_PATH, CACHE_PATH | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df, calc_average | |
from src.submission.submit import add_new_eval, add_new_challenge | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
try: | |
print(CACHE_PATH) | |
snapshot_download( | |
repo_id=DATA_REPO, local_dir=CACHE_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
print("Could not download the dataset. Please check your token and network connection.") | |
restart_space() | |
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, COLS_PAIRED) | |
leaderboard_df = original_df.copy() | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
): | |
df = select_columns(hidden_df, columns) | |
if AutoEvalColumn.average.name in df.columns: | |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
df[[AutoEvalColumn.average.name]] = df[[AutoEvalColumn.average.name]].round(decimals=4) | |
elif AutoEvalColumn.model.name in df.columns: | |
df = df.sort_values(by=[AutoEvalColumn.model.name], ascending=True) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
# AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] | |
] | |
if AutoEvalColumn.average.name in filtered_df.columns: | |
filtered_df[AutoEvalColumn.average.name] = filtered_df.apply(lambda row: calc_average(row, [col[0] for col in BENCHMARK_COLS]), axis=1) | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("Leaderboard", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
for selector in [shown_columns]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("Submit Algorithm", elem_id="llm-benchmark-tab-table", id=1): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:qiutianyi.qty@gmail.com) the ProgressGym team.", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
submission_file = gr.File(label="Evaluation result (JSON file generated by run_benchmark.py, one algorithm on all challenges)", file_types=['.json']) | |
with gr.Column(): | |
algo_name = gr.Textbox(label="Algorithm display name") | |
algo_info = gr.Textbox(label="Optional: Comments & extra information") | |
algo_link = gr.Textbox(label="Optional: One external link (e.g. GitHub repo, paper, project page)") | |
submitter_email = gr.Textbox(label="Optional: Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)") | |
submit_button = gr.Button("Submit Algorithm") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
submission_file, | |
algo_name, | |
algo_info, | |
algo_link, | |
submitter_email, | |
], | |
submission_result, | |
) | |
with gr.TabItem("Submit Challenge", elem_id="llm-benchmark-tab-table", id=2): | |
with gr.Row(): | |
gr.Markdown(SUBMIT_CHALLENGE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:qiutianyi.qty@gmail.com) the ProgressGym team.", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
challenge_submission_file = gr.File(label="Optional: Evaluation results (JSON file(s) generated by run_benchmark.py, testing all algorithms on your challenge)", file_count='multiple', file_types=['.json']) | |
with gr.Column(): | |
challenge_name = gr.Textbox(label="Challenge display name") | |
challenge_info = gr.Textbox(label="Comments & extra information", lines=3) | |
challenge_link = gr.Textbox(label="One external link (e.g. GitHub repo, paper, project page)") | |
challenge_submitter_email = gr.Textbox(label="Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)") | |
challenge_submit_button = gr.Button("Submit Challenge") | |
challenge_submission_result = gr.Markdown() | |
challenge_submit_button.click( | |
add_new_challenge, | |
[ | |
challenge_submission_file, | |
challenge_name, | |
challenge_info, | |
challenge_link, | |
challenge_submitter_email, | |
], | |
challenge_submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("About & Citation 📖", open=False): | |
about_text = gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |