Tianyi (Alex) Qiu
finish framework (esp. submit challenge & encrypt)
139f14b
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
ABOUT_TEXT,
SUBMIT_CHALLENGE_TEXT,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
COLS_PAIRED,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
AlgoType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DATA_REPO, REPO_ID, TOKEN, REQUESTS_REPO_PATH, RESULTS_REPO_PATH, CACHE_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, calc_average
from src.submission.submit import add_new_eval, add_new_challenge
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(CACHE_PATH)
snapshot_download(
repo_id=DATA_REPO, local_dir=CACHE_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
print("Could not download the dataset. Please check your token and network connection.")
restart_space()
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, COLS_PAIRED)
leaderboard_df = original_df.copy()
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
):
df = select_columns(hidden_df, columns)
if AutoEvalColumn.average.name in df.columns:
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df[[AutoEvalColumn.average.name]] = df[[AutoEvalColumn.average.name]].round(decimals=4)
elif AutoEvalColumn.model.name in df.columns:
df = df.sort_values(by=[AutoEvalColumn.model.name], ascending=True)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
# AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
if AutoEvalColumn.average.name in filtered_df.columns:
filtered_df[AutoEvalColumn.average.name] = filtered_df.apply(lambda row: calc_average(row, [col[0] for col in BENCHMARK_COLS]), axis=1)
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
for selector in [shown_columns]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("Submit Algorithm", elem_id="llm-benchmark-tab-table", id=1):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:qiutianyi.qty@gmail.com) the ProgressGym team.", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
submission_file = gr.File(label="Evaluation result (JSON file generated by run_benchmark.py, one algorithm on all challenges)", file_types=['.json'])
with gr.Column():
algo_name = gr.Textbox(label="Algorithm display name")
algo_info = gr.Textbox(label="Optional: Comments & extra information")
algo_link = gr.Textbox(label="Optional: One external link (e.g. GitHub repo, paper, project page)")
submitter_email = gr.Textbox(label="Optional: Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)")
submit_button = gr.Button("Submit Algorithm")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
submission_file,
algo_name,
algo_info,
algo_link,
submitter_email,
],
submission_result,
)
with gr.TabItem("Submit Challenge", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(SUBMIT_CHALLENGE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# Submission Form\nSubmitted files will be stored and made public. If you have any questions, please [contact](mailto:qiutianyi.qty@gmail.com) the ProgressGym team.", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
challenge_submission_file = gr.File(label="Optional: Evaluation results (JSON file(s) generated by run_benchmark.py, testing all algorithms on your challenge)", file_count='multiple', file_types=['.json'])
with gr.Column():
challenge_name = gr.Textbox(label="Challenge display name")
challenge_info = gr.Textbox(label="Comments & extra information", lines=3)
challenge_link = gr.Textbox(label="One external link (e.g. GitHub repo, paper, project page)")
challenge_submitter_email = gr.Textbox(label="Email address for contact (will be encrypted with RSA-2048 for privacy before storage and public archiving)")
challenge_submit_button = gr.Button("Submit Challenge")
challenge_submission_result = gr.Markdown()
challenge_submit_button.click(
add_new_challenge,
[
challenge_submission_file,
challenge_name,
challenge_info,
challenge_link,
challenge_submitter_email,
],
challenge_submission_result,
)
with gr.Row():
with gr.Accordion("About & Citation 📖", open=False):
about_text = gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()