Spaces:
Runtime error
Runtime error
import json | |
import os | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model, model_hyperlink | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.read_evals import get_raw_eval_results | |
def calc_average(row: pd.Series, benchmark_cols: list) -> float: | |
"""Calculates the average of the benchmark columns that exist in the row""" | |
return row[[col for col in benchmark_cols if col in row]].mean() | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols_paired: list, cols_paired: list) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
# raw_data = get_raw_eval_results(results_path, requests_path) | |
# all_data_json = [v.to_dict() for v in raw_data] | |
all_data_json = [] | |
benchmark_cols = [col[0] for col in benchmark_cols_paired] | |
with open('./master_table.json') as f: | |
content = json.load(f) | |
for key, val in content.items(): | |
val['eval_name'] = val['id'] | |
del val['id'] | |
if 'link' in val and val['link'].strip(): | |
val['Algorithm'] = model_hyperlink(val['link'], val['name']) | |
else: | |
val['Algorithm'] = val['name'] | |
del val['name'] | |
# fill in the missing benchmark columns as 0 | |
for display_name, benchmark in benchmark_cols_paired: | |
if benchmark not in val: | |
val[display_name] = 0 | |
else: | |
val[display_name] = val[benchmark] | |
del val[benchmark] | |
# change all the keys to the display names | |
for display_name, col in cols_paired: | |
if display_name in val: | |
pass | |
elif col in val: | |
val[display_name] = val[col] | |
del val[col] | |
else: | |
val[display_name] = None | |
all_data_json.append(val) | |
print(f'All data json: {all_data_json}') | |
df = pd.DataFrame.from_records(all_data_json) | |
df[AutoEvalColumn.average.name] = df.apply(lambda row: calc_average(row, benchmark_cols), axis=1) | |
print(df, AutoEvalColumn.average.name) | |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
df = df[cols].round(decimals=4) | |
# filter out if any of the benchmarks have not been produced | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
return df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
"""Creates the different dataframes for the evaluation queues requestes""" | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
print(sub_entries) | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |