Tianyi (Alex) Qiu commited on
Commit
24a3e20
·
1 Parent(s): 487d79e

customize tasks

Browse files
.gitignore CHANGED
@@ -11,3 +11,8 @@ eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
 
 
 
 
 
 
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
14
+
15
+ demo-leaderboard/
16
+ results/
17
+ upload_history/
18
+ master_table.json
app.py CHANGED
@@ -26,7 +26,7 @@ from src.display.utils import (
26
  WeightType,
27
  Precision
28
  )
29
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DATA_REPO, REPO_ID, TOKEN
30
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
  from src.submission.submit import add_new_eval
32
 
@@ -35,31 +35,17 @@ def restart_space():
35
  API.restart_space(repo_id=REPO_ID)
36
 
37
  try:
38
- print(EVAL_REQUESTS_PATH)
39
  snapshot_download(
40
- repo_id=DATA_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
41
  )
42
  except Exception:
 
43
  restart_space()
44
- try:
45
- print(EVAL_RESULTS_PATH)
46
- snapshot_download(
47
- repo_id=DATA_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
48
- )
49
- except Exception:
50
- restart_space()
51
-
52
 
53
  raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
  leaderboard_df = original_df.copy()
55
 
56
- (
57
- finished_eval_queue_df,
58
- running_eval_queue_df,
59
- pending_eval_queue_df,
60
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
-
62
-
63
  # Searching and filtering
64
  def update_table(
65
  hidden_df: pd.DataFrame,
@@ -75,7 +61,7 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
75
 
76
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
77
  always_here_cols = [
78
- AutoEvalColumn.model_type_symbol.name,
79
  AutoEvalColumn.model.name,
80
  ]
81
  # We use COLS to maintain sorting
 
26
  WeightType,
27
  Precision
28
  )
29
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DATA_REPO, REPO_ID, TOKEN, REQUESTS_REPO_PATH, RESULTS_REPO_PATH, CACHE_PATH
30
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
  from src.submission.submit import add_new_eval
32
 
 
35
  API.restart_space(repo_id=REPO_ID)
36
 
37
  try:
38
+ print(CACHE_PATH)
39
  snapshot_download(
40
+ repo_id=DATA_REPO, local_dir=CACHE_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
41
  )
42
  except Exception:
43
+ print("Could not download the dataset. Please check your token and network connection.")
44
  restart_space()
 
 
 
 
 
 
 
 
45
 
46
  raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
47
  leaderboard_df = original_df.copy()
48
 
 
 
 
 
 
 
 
49
  # Searching and filtering
50
  def update_table(
51
  hidden_df: pd.DataFrame,
 
61
 
62
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
63
  always_here_cols = [
64
+ # AutoEvalColumn.model_type_symbol.name,
65
  AutoEvalColumn.model.name,
66
  ]
67
  # We use COLS to maintain sorting
src/about.py CHANGED
@@ -12,8 +12,11 @@ class Task:
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
 
 
 
17
 
18
  NUM_FEWSHOT = 0 # Change with your few shot
19
  # ---------------------------------------------------
 
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ # task0 = Task("anli_r1", "acc", "ANLI")
16
+ # task1 = Task("logiqa", "acc_norm", "LogiQA")
17
+ task0 = Task("Follow", "accuracy", "Follow")
18
+ task1 = Task("Predict", "accuracy", "Predict")
19
+ task2 = Task("Coevolve", "accuracy", "Coevolve")
20
 
21
  NUM_FEWSHOT = 0 # Change with your few shot
22
  # ---------------------------------------------------
src/display/utils.py CHANGED
@@ -22,13 +22,16 @@ class ColumnContent:
22
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
 
25
  # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
 
28
  #Scores
29
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
 
32
  # Model information
33
  auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
  auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
 
22
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
+
26
  # Init
27
+ # auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
28
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
+
30
  #Scores
31
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
32
  for task in Tasks:
33
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
34
+
35
  # Model information
36
  auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
37
  auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
src/envs.py CHANGED
@@ -11,6 +11,8 @@ OWNER = "PKU-Alignment" # Change to your org - don't forget to create a results
11
 
12
  REPO_ID = f"{OWNER}/ProgressGym-LeaderBoard"
13
  DATA_REPO = f"{OWNER}/ProgressGym-LeaderBoardData"
 
 
14
 
15
  # If you setup a cache later, just change HF_HOME
16
  CACHE_PATH=os.getenv("HF_HOME", ".")
 
11
 
12
  REPO_ID = f"{OWNER}/ProgressGym-LeaderBoard"
13
  DATA_REPO = f"{OWNER}/ProgressGym-LeaderBoardData"
14
+ RESULTS_REPO_PATH = 'eval-results/'
15
+ REQUESTS_REPO_PATH = 'eval-queue/'
16
 
17
  # If you setup a cache later, just change HF_HOME
18
  CACHE_PATH=os.getenv("HF_HOME", ".")
src/leaderboard/read_evals.py CHANGED
@@ -114,7 +114,7 @@ class EvalResult:
114
  "eval_name": self.eval_name, # not a column, just a save name,
115
  AutoEvalColumn.precision.name: self.precision.value.name,
116
  AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
  AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
  AutoEvalColumn.architecture.name: self.architecture,
120
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
@@ -127,7 +127,10 @@ class EvalResult:
127
  }
128
 
129
  for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
 
 
 
131
 
132
  return data_dict
133
 
@@ -158,6 +161,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
158
  """From the path of the results folder root, extract all needed info for results"""
159
  model_result_filepaths = []
160
 
 
161
  for root, _, files in os.walk(results_path):
162
  # We should only have json files in model results
163
  if len(files) == 0 or any([not f.endswith(".json") for f in files]):
@@ -172,11 +176,13 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
172
  for file in files:
173
  model_result_filepaths.append(os.path.join(root, file))
174
 
 
175
  eval_results = {}
176
  for model_result_filepath in model_result_filepaths:
177
  # Creation of result
178
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
  eval_result.update_with_request_file(requests_path)
 
180
 
181
  # Store results of same eval together
182
  eval_name = eval_result.eval_name
@@ -191,6 +197,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
191
  v.to_dict() # we test if the dict version is complete
192
  results.append(v)
193
  except KeyError: # not all eval values present
 
194
  continue
195
 
196
  return results
 
114
  "eval_name": self.eval_name, # not a column, just a save name,
115
  AutoEvalColumn.precision.name: self.precision.value.name,
116
  AutoEvalColumn.model_type.name: self.model_type.value.name,
117
+ # AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
  AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
  AutoEvalColumn.architecture.name: self.architecture,
120
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
 
127
  }
128
 
129
  for task in Tasks:
130
+ try:
131
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
132
+ except:
133
+ data_dict[task.value.col_name] = 0
134
 
135
  return data_dict
136
 
 
161
  """From the path of the results folder root, extract all needed info for results"""
162
  model_result_filepaths = []
163
 
164
+ print(f"Reading results from {results_path}")
165
  for root, _, files in os.walk(results_path):
166
  # We should only have json files in model results
167
  if len(files) == 0 or any([not f.endswith(".json") for f in files]):
 
176
  for file in files:
177
  model_result_filepaths.append(os.path.join(root, file))
178
 
179
+ print(f"Found these files: {model_result_filepaths}")
180
  eval_results = {}
181
  for model_result_filepath in model_result_filepaths:
182
  # Creation of result
183
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
184
  eval_result.update_with_request_file(requests_path)
185
+ print(f"Found result for {eval_result.full_model} with precision {eval_result.precision.value.name}")
186
 
187
  # Store results of same eval together
188
  eval_name = eval_result.eval_name
 
197
  v.to_dict() # we test if the dict version is complete
198
  results.append(v)
199
  except KeyError: # not all eval values present
200
+ print(f"Skipping {v.full_model} as not all values are present ({v.to_dict()})")
201
  continue
202
 
203
  return results
src/legacy/app.py DELETED
@@ -1,331 +0,0 @@
1
- import subprocess
2
- import gradio as gr
3
- import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- NUMERIC_INTERVALS,
22
- TYPES,
23
- AutoEvalColumn,
24
- ModelType,
25
- fields,
26
- WeightType,
27
- Precision
28
- )
29
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
- from src.submission.submit import add_new_eval
32
-
33
-
34
- def restart_space():
35
- API.restart_space(repo_id=REPO_ID)
36
-
37
- try:
38
- print(EVAL_REQUESTS_PATH)
39
- snapshot_download(
40
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
41
- )
42
- except Exception:
43
- restart_space()
44
- try:
45
- print(EVAL_RESULTS_PATH)
46
- snapshot_download(
47
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
48
- )
49
- except Exception:
50
- restart_space()
51
-
52
-
53
- raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
- leaderboard_df = original_df.copy()
55
-
56
- (
57
- finished_eval_queue_df,
58
- running_eval_queue_df,
59
- pending_eval_queue_df,
60
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
-
62
-
63
- # Searching and filtering
64
- def update_table(
65
- hidden_df: pd.DataFrame,
66
- columns: list,
67
- type_query: list,
68
- precision_query: str,
69
- size_query: list,
70
- show_deleted: bool,
71
- query: str,
72
- ):
73
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
74
- filtered_df = filter_queries(query, filtered_df)
75
- df = select_columns(filtered_df, columns)
76
- return df
77
-
78
-
79
- def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
80
- return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
81
-
82
-
83
- def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
84
- always_here_cols = [
85
- AutoEvalColumn.model_type_symbol.name,
86
- AutoEvalColumn.model.name,
87
- ]
88
- # We use COLS to maintain sorting
89
- filtered_df = df[
90
- always_here_cols + [c for c in COLS if c in df.columns and c in columns]
91
- ]
92
- return filtered_df
93
-
94
-
95
- def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
96
- # final_df = []
97
- # if query != "":
98
- # queries = [q.strip() for q in query.split(";")]
99
- # for _q in queries:
100
- # _q = _q.strip()
101
- # if _q != "":
102
- # temp_filtered_df = search_table(filtered_df, _q)
103
- # if len(temp_filtered_df) > 0:
104
- # final_df.append(temp_filtered_df)
105
- # if len(final_df) > 0:
106
- # filtered_df = pd.concat(final_df)
107
- # filtered_df = filtered_df.drop_duplicates(
108
- # subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
109
- # )
110
-
111
- return filtered_df
112
-
113
-
114
- def filter_models(
115
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
116
- ) -> pd.DataFrame:
117
- # Show all models
118
- return df
119
-
120
-
121
- demo = gr.Blocks(css=custom_css)
122
- with demo:
123
- gr.HTML(TITLE)
124
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
125
-
126
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
127
- with gr.TabItem("Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
128
- with gr.Row():
129
- with gr.Column():
130
- # with gr.Row():
131
- # search_bar = gr.Textbox(
132
- # placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
133
- # show_label=False,
134
- # elem_id="search-bar",
135
- # )
136
- with gr.Row():
137
- shown_columns = gr.CheckboxGroup(
138
- choices=[
139
- c.name
140
- for c in fields(AutoEvalColumn)
141
- if not c.hidden and not c.never_hidden
142
- ],
143
- value=[
144
- c.name
145
- for c in fields(AutoEvalColumn)
146
- if c.displayed_by_default and not c.hidden and not c.never_hidden
147
- ],
148
- label="Select columns to show",
149
- elem_id="column-select",
150
- interactive=True,
151
- )
152
- # with gr.Row():
153
- # deleted_models_visibility = gr.Checkbox(
154
- # value=False, label="Show gated/private/deleted models", interactive=True
155
- # )
156
- # with gr.Column(min_width=320):
157
- # #with gr.Box(elem_id="box-filter"):
158
- # filter_columns_type = gr.CheckboxGroup(
159
- # label="Model types",
160
- # choices=[t.to_str() for t in ModelType],
161
- # value=[t.to_str() for t in ModelType],
162
- # interactive=True,
163
- # elem_id="filter-columns-type",
164
- # )
165
- # filter_columns_precision = gr.CheckboxGroup(
166
- # label="Precision",
167
- # choices=[i.value.name for i in Precision],
168
- # value=[i.value.name for i in Precision],
169
- # interactive=True,
170
- # elem_id="filter-columns-precision",
171
- # )
172
- # filter_columns_size = gr.CheckboxGroup(
173
- # label="Model sizes (in billions of parameters)",
174
- # choices=list(NUMERIC_INTERVALS.keys()),
175
- # value=list(NUMERIC_INTERVALS.keys()),
176
- # interactive=True,
177
- # elem_id="filter-columns-size",
178
- # )
179
-
180
- leaderboard_table = gr.components.Dataframe(
181
- value=leaderboard_df[
182
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
183
- + shown_columns.value
184
- ],
185
- headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
186
- datatype=TYPES,
187
- elem_id="leaderboard-table",
188
- interactive=False,
189
- visible=True,
190
- )
191
-
192
- # Dummy leaderboard for handling the case when the user uses backspace key
193
- hidden_leaderboard_table_for_search = gr.components.Dataframe(
194
- value=original_df[COLS],
195
- headers=COLS,
196
- datatype=TYPES,
197
- visible=False,
198
- )
199
- # search_bar.submit(
200
- # update_table,
201
- # [
202
- # hidden_leaderboard_table_for_search,
203
- # shown_columns,
204
- # filter_columns_type,
205
- # filter_columns_precision,
206
- # filter_columns_size,
207
- # deleted_models_visibility,
208
- # search_bar,
209
- # ],
210
- # leaderboard_table,
211
- # )
212
- for selector in [shown_columns]: # removed: filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility
213
- selector.change(
214
- update_table,
215
- [
216
- hidden_leaderboard_table_for_search,
217
- shown_columns,
218
- # filter_columns_type,
219
- # filter_columns_precision,
220
- # filter_columns_size,
221
- # deleted_models_visibility,
222
- # search_bar,
223
- ],
224
- leaderboard_table,
225
- queue=True,
226
- )
227
-
228
- with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2):
229
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
230
-
231
- with gr.TabItem("Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
232
- with gr.Column():
233
- with gr.Row():
234
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
235
-
236
- with gr.Column():
237
- with gr.Accordion(
238
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
239
- open=False,
240
- ):
241
- with gr.Row():
242
- finished_eval_table = gr.components.Dataframe(
243
- value=finished_eval_queue_df,
244
- headers=EVAL_COLS,
245
- datatype=EVAL_TYPES,
246
- row_count=5,
247
- )
248
- with gr.Accordion(
249
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
250
- open=False,
251
- ):
252
- with gr.Row():
253
- running_eval_table = gr.components.Dataframe(
254
- value=running_eval_queue_df,
255
- headers=EVAL_COLS,
256
- datatype=EVAL_TYPES,
257
- row_count=5,
258
- )
259
-
260
- with gr.Accordion(
261
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
262
- open=False,
263
- ):
264
- with gr.Row():
265
- pending_eval_table = gr.components.Dataframe(
266
- value=pending_eval_queue_df,
267
- headers=EVAL_COLS,
268
- datatype=EVAL_TYPES,
269
- row_count=5,
270
- )
271
- with gr.Row():
272
- gr.Markdown("# Submit your model here!", elem_classes="markdown-text")
273
-
274
- with gr.Row():
275
- with gr.Column():
276
- model_name_textbox = gr.Textbox(label="Model name")
277
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
278
- model_type = gr.Dropdown(
279
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
280
- label="Model type",
281
- multiselect=False,
282
- value=None,
283
- interactive=True,
284
- )
285
-
286
- with gr.Column():
287
- precision = gr.Dropdown(
288
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
289
- label="Precision",
290
- multiselect=False,
291
- value="float16",
292
- interactive=True,
293
- )
294
- weight_type = gr.Dropdown(
295
- choices=[i.value.name for i in WeightType],
296
- label="Weights type",
297
- multiselect=False,
298
- value="Original",
299
- interactive=True,
300
- )
301
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
302
-
303
- submit_button = gr.Button("Submit Eval")
304
- submission_result = gr.Markdown()
305
- submit_button.click(
306
- add_new_eval,
307
- [
308
- model_name_textbox,
309
- base_model_name_textbox,
310
- revision_name_textbox,
311
- precision,
312
- weight_type,
313
- model_type,
314
- ],
315
- submission_result,
316
- )
317
-
318
- with gr.Row():
319
- with gr.Accordion("Citation", open=False):
320
- citation_button = gr.Textbox(
321
- value=CITATION_BUTTON_TEXT,
322
- label=CITATION_BUTTON_LABEL,
323
- lines=20,
324
- elem_id="citation-button",
325
- show_copy_button=True,
326
- )
327
-
328
- scheduler = BackgroundScheduler()
329
- scheduler.add_job(restart_space, "interval", seconds=1800)
330
- scheduler.start()
331
- demo.queue(default_concurrency_limit=40).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/legacy/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py CHANGED
@@ -11,9 +11,11 @@ from src.leaderboard.read_evals import get_raw_eval_results
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
 
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
 
17
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
  df = df[cols].round(decimals=2)
19
 
@@ -40,6 +42,7 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
40
  elif ".md" not in entry:
41
  # this is a folder
42
  sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
 
43
  for sub_entry in sub_entries:
44
  file_path = os.path.join(save_path, entry, sub_entry)
45
  with open(file_path) as fp:
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
+ print(raw_data)
15
  all_data_json = [v.to_dict() for v in raw_data]
16
 
17
  df = pd.DataFrame.from_records(all_data_json)
18
+ print(df, AutoEvalColumn.average.name)
19
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
20
  df = df[cols].round(decimals=2)
21
 
 
42
  elif ".md" not in entry:
43
  # this is a folder
44
  sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
45
+ print(sub_entries)
46
  for sub_entry in sub_entries:
47
  file_path = os.path.join(save_path, entry, sub_entry)
48
  with open(file_path) as fp:
src/submission/submit.py CHANGED
@@ -51,7 +51,8 @@ def add_new_eval(
51
 
52
  # parse the submission file
53
  try:
54
- submission_data = json.loads(file_path)
 
55
  except JSONDecodeError:
56
  return styled_error("Invalid submission file: JSON parsing failed.")
57
 
@@ -90,7 +91,7 @@ def add_new_eval(
90
  "update_timestamp": timestamp_filename,
91
  }
92
 
93
- for challenge, result in results_per_challenge:
94
  try:
95
  parsed_result: float = parse_challenge_result_dict(challenge, result)
96
  assert isinstance(parsed_result, float)
 
51
 
52
  # parse the submission file
53
  try:
54
+ with open(file_path, "r") as f:
55
+ submission_data = json.load(f)
56
  except JSONDecodeError:
57
  return styled_error("Invalid submission file: JSON parsing failed.")
58
 
 
91
  "update_timestamp": timestamp_filename,
92
  }
93
 
94
+ for challenge, result in results_per_challenge.items():
95
  try:
96
  parsed_result: float = parse_challenge_result_dict(challenge, result)
97
  assert isinstance(parsed_result, float)