File size: 11,036 Bytes
ac4ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 24 15:43:29 2017
@author: zhaoy
"""
import numpy as np
import cv2

# from scipy.linalg import lstsq
# from scipy.ndimage import geometric_transform  # , map_coordinates

from models.mtcnn.mtcnn_pytorch.src.matlab_cp2tform import get_similarity_transform_for_cv2

# reference facial points, a list of coordinates (x,y)
REFERENCE_FACIAL_POINTS = [
    [30.29459953, 51.69630051],
    [65.53179932, 51.50139999],
    [48.02519989, 71.73660278],
    [33.54930115, 92.3655014],
    [62.72990036, 92.20410156]
]

DEFAULT_CROP_SIZE = (96, 112)


class FaceWarpException(Exception):
    def __str__(self):
        return 'In File {}:{}'.format(
            __file__, super.__str__(self))


def get_reference_facial_points(output_size=None,
                                inner_padding_factor=0.0,
                                outer_padding=(0, 0),
                                default_square=False):
    """
    Function:
    ----------
        get reference 5 key points according to crop settings:
        0. Set default crop_size:
            if default_square: 
                crop_size = (112, 112)
            else: 
                crop_size = (96, 112)
        1. Pad the crop_size by inner_padding_factor in each side;
        2. Resize crop_size into (output_size - outer_padding*2),
            pad into output_size with outer_padding;
        3. Output reference_5point;
    Parameters:
    ----------
        @output_size: (w, h) or None
            size of aligned face image
        @inner_padding_factor: (w_factor, h_factor)
            padding factor for inner (w, h)
        @outer_padding: (w_pad, h_pad)
            each row is a pair of coordinates (x, y)
        @default_square: True or False
            if True:
                default crop_size = (112, 112)
            else:
                default crop_size = (96, 112);
        !!! make sure, if output_size is not None:
                (output_size - outer_padding) 
                = some_scale * (default crop_size * (1.0 + inner_padding_factor))
    Returns:
    ----------
        @reference_5point: 5x2 np.array
            each row is a pair of transformed coordinates (x, y)
    """
    # print('\n===> get_reference_facial_points():')

    # print('---> Params:')
    # print('            output_size: ', output_size)
    # print('            inner_padding_factor: ', inner_padding_factor)
    # print('            outer_padding:', outer_padding)
    # print('            default_square: ', default_square)

    tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
    tmp_crop_size = np.array(DEFAULT_CROP_SIZE)

    # 0) make the inner region a square
    if default_square:
        size_diff = max(tmp_crop_size) - tmp_crop_size
        tmp_5pts += size_diff / 2
        tmp_crop_size += size_diff

    # print('---> default:')
    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)

    if (output_size and
            output_size[0] == tmp_crop_size[0] and
            output_size[1] == tmp_crop_size[1]):
        # print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size))
        return tmp_5pts

    if (inner_padding_factor == 0 and
            outer_padding == (0, 0)):
        if output_size is None:
            # print('No paddings to do: return default reference points')
            return tmp_5pts
        else:
            raise FaceWarpException(
                'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))

    # check output size
    if not (0 <= inner_padding_factor <= 1.0):
        raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')

    if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0)
            and output_size is None):
        output_size = tmp_crop_size * \
                      (1 + inner_padding_factor * 2).astype(np.int32)
        output_size += np.array(outer_padding)
        # print('              deduced from paddings, output_size = ', output_size)

    if not (outer_padding[0] < output_size[0]
            and outer_padding[1] < output_size[1]):
        raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
                                'and outer_padding[1] < output_size[1])')

    # 1) pad the inner region according inner_padding_factor
    # print('---> STEP1: pad the inner region according inner_padding_factor')
    if inner_padding_factor > 0:
        size_diff = tmp_crop_size * inner_padding_factor * 2
        tmp_5pts += size_diff / 2
        tmp_crop_size += np.round(size_diff).astype(np.int32)

    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)

    # 2) resize the padded inner region
    # print('---> STEP2: resize the padded inner region')
    size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
    # print('              crop_size = ', tmp_crop_size)
    # print('              size_bf_outer_pad = ', size_bf_outer_pad)

    if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
        raise FaceWarpException('Must have (output_size - outer_padding)'
                                '= some_scale * (crop_size * (1.0 + inner_padding_factor)')

    scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
    # print('              resize scale_factor = ', scale_factor)
    tmp_5pts = tmp_5pts * scale_factor
    #    size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
    #    tmp_5pts = tmp_5pts + size_diff / 2
    tmp_crop_size = size_bf_outer_pad
    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)

    # 3) add outer_padding to make output_size
    reference_5point = tmp_5pts + np.array(outer_padding)
    tmp_crop_size = output_size
    # print('---> STEP3: add outer_padding to make output_size')
    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)

    # print('===> end get_reference_facial_points\n')

    return reference_5point


def get_affine_transform_matrix(src_pts, dst_pts):
    """
    Function:
    ----------
        get affine transform matrix 'tfm' from src_pts to dst_pts
    Parameters:
    ----------
        @src_pts: Kx2 np.array
            source points matrix, each row is a pair of coordinates (x, y)
        @dst_pts: Kx2 np.array
            destination points matrix, each row is a pair of coordinates (x, y)
    Returns:
    ----------
        @tfm: 2x3 np.array
            transform matrix from src_pts to dst_pts
    """

    tfm = np.float32([[1, 0, 0], [0, 1, 0]])
    n_pts = src_pts.shape[0]
    ones = np.ones((n_pts, 1), src_pts.dtype)
    src_pts_ = np.hstack([src_pts, ones])
    dst_pts_ = np.hstack([dst_pts, ones])

    #    #print(('src_pts_:\n' + str(src_pts_))
    #    #print(('dst_pts_:\n' + str(dst_pts_))

    A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)

    #    #print(('np.linalg.lstsq return A: \n' + str(A))
    #    #print(('np.linalg.lstsq return res: \n' + str(res))
    #    #print(('np.linalg.lstsq return rank: \n' + str(rank))
    #    #print(('np.linalg.lstsq return s: \n' + str(s))

    if rank == 3:
        tfm = np.float32([
            [A[0, 0], A[1, 0], A[2, 0]],
            [A[0, 1], A[1, 1], A[2, 1]]
        ])
    elif rank == 2:
        tfm = np.float32([
            [A[0, 0], A[1, 0], 0],
            [A[0, 1], A[1, 1], 0]
        ])

    return tfm


def warp_and_crop_face(src_img,
                       facial_pts,
                       reference_pts=None,
                       crop_size=(96, 112),
                       align_type='smilarity'):
    """
    Function:
    ----------
        apply affine transform 'trans' to uv
    Parameters:
    ----------
        @src_img: 3x3 np.array
            input image
        @facial_pts: could be
            1)a list of K coordinates (x,y)
        or
            2) Kx2 or 2xK np.array
            each row or col is a pair of coordinates (x, y)
        @reference_pts: could be
            1) a list of K coordinates (x,y)
        or
            2) Kx2 or 2xK np.array
            each row or col is a pair of coordinates (x, y)
        or
            3) None
            if None, use default reference facial points
        @crop_size: (w, h)
            output face image size
        @align_type: transform type, could be one of
            1) 'similarity': use similarity transform
            2) 'cv2_affine': use the first 3 points to do affine transform,
                    by calling cv2.getAffineTransform()
            3) 'affine': use all points to do affine transform
    Returns:
    ----------
        @face_img: output face image with size (w, h) = @crop_size
    """

    if reference_pts is None:
        if crop_size[0] == 96 and crop_size[1] == 112:
            reference_pts = REFERENCE_FACIAL_POINTS
        else:
            default_square = False
            inner_padding_factor = 0
            outer_padding = (0, 0)
            output_size = crop_size

            reference_pts = get_reference_facial_points(output_size,
                                                        inner_padding_factor,
                                                        outer_padding,
                                                        default_square)

    ref_pts = np.float32(reference_pts)
    ref_pts_shp = ref_pts.shape
    if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
        raise FaceWarpException(
            'reference_pts.shape must be (K,2) or (2,K) and K>2')

    if ref_pts_shp[0] == 2:
        ref_pts = ref_pts.T

    src_pts = np.float32(facial_pts)
    src_pts_shp = src_pts.shape
    if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
        raise FaceWarpException(
            'facial_pts.shape must be (K,2) or (2,K) and K>2')

    if src_pts_shp[0] == 2:
        src_pts = src_pts.T

    #    #print('--->src_pts:\n', src_pts
    #    #print('--->ref_pts\n', ref_pts

    if src_pts.shape != ref_pts.shape:
        raise FaceWarpException(
            'facial_pts and reference_pts must have the same shape')

    if align_type is 'cv2_affine':
        tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
    #        #print(('cv2.getAffineTransform() returns tfm=\n' + str(tfm))
    elif align_type is 'affine':
        tfm = get_affine_transform_matrix(src_pts, ref_pts)
    #        #print(('get_affine_transform_matrix() returns tfm=\n' + str(tfm))
    else:
        tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
    #        #print(('get_similarity_transform_for_cv2() returns tfm=\n' + str(tfm))

    #    #print('--->Transform matrix: '
    #    #print(('type(tfm):' + str(type(tfm)))
    #    #print(('tfm.dtype:' + str(tfm.dtype))
    #    #print( tfm

    face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))

    return face_img, tfm