Spaces:
Sleeping
Sleeping
File size: 11,833 Bytes
ac4ce84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
from __future__ import absolute_import
import sys
import numpy as np
import torch
from torch import nn
import os
from collections import OrderedDict
from torch.autograd import Variable
import itertools
from models.stylegan2.lpips.base_model import BaseModel
from scipy.ndimage import zoom
import fractions
import functools
import skimage.transform
from tqdm import tqdm
from IPython import embed
from models.stylegan2.lpips import networks_basic as networks
import models.stylegan2.lpips as util
class DistModel(BaseModel):
def name(self):
return self.model_name
def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False, model_path=None,
use_gpu=True, printNet=False, spatial=False,
is_train=False, lr=.0001, beta1=0.5, version='0.1', gpu_ids=[0]):
'''
INPUTS
model - ['net-lin'] for linearly calibrated network
['net'] for off-the-shelf network
['L2'] for L2 distance in Lab colorspace
['SSIM'] for ssim in RGB colorspace
net - ['squeeze','alex','vgg']
model_path - if None, will look in weights/[NET_NAME].pth
colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM
use_gpu - bool - whether or not to use a GPU
printNet - bool - whether or not to print network architecture out
spatial - bool - whether to output an array containing varying distances across spatial dimensions
spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below).
spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images.
spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear).
is_train - bool - [True] for training mode
lr - float - initial learning rate
beta1 - float - initial momentum term for adam
version - 0.1 for latest, 0.0 was original (with a bug)
gpu_ids - int array - [0] by default, gpus to use
'''
BaseModel.initialize(self, use_gpu=use_gpu, gpu_ids=gpu_ids)
self.model = model
self.net = net
self.is_train = is_train
self.spatial = spatial
self.gpu_ids = gpu_ids
self.model_name = '%s [%s]'%(model,net)
if(self.model == 'net-lin'): # pretrained net + linear layer
self.net = networks.PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net,
use_dropout=True, spatial=spatial, version=version, lpips=True)
kw = {}
if not use_gpu:
kw['map_location'] = 'cpu'
if(model_path is None):
import inspect
model_path = os.path.abspath(os.path.join(inspect.getfile(self.initialize), '..', 'weights/v%s/%s.pth'%(version,net)))
if(not is_train):
print('Loading model from: %s'%model_path)
self.net.load_state_dict(torch.load(model_path, **kw), strict=False)
elif(self.model=='net'): # pretrained network
self.net = networks.PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False)
elif(self.model in ['L2','l2']):
self.net = networks.L2(use_gpu=use_gpu,colorspace=colorspace) # not really a network, only for testing
self.model_name = 'L2'
elif(self.model in ['DSSIM','dssim','SSIM','ssim']):
self.net = networks.DSSIM(use_gpu=use_gpu,colorspace=colorspace)
self.model_name = 'SSIM'
else:
raise ValueError("Model [%s] not recognized." % self.model)
self.parameters = list(self.net.parameters())
if self.is_train: # training mode
# extra network on top to go from distances (d0,d1) => predicted human judgment (h*)
self.rankLoss = networks.BCERankingLoss()
self.parameters += list(self.rankLoss.net.parameters())
self.lr = lr
self.old_lr = lr
self.optimizer_net = torch.optim.Adam(self.parameters, lr=lr, betas=(beta1, 0.999))
else: # test mode
self.net.eval()
if(use_gpu):
self.net.to(gpu_ids[0])
self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids)
if(self.is_train):
self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0
if(printNet):
print('---------- Networks initialized -------------')
networks.print_network(self.net)
print('-----------------------------------------------')
def forward(self, in0, in1, retPerLayer=False):
''' Function computes the distance between image patches in0 and in1
INPUTS
in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1]
OUTPUT
computed distances between in0 and in1
'''
return self.net.forward(in0, in1, retPerLayer=retPerLayer)
# ***** TRAINING FUNCTIONS *****
def optimize_parameters(self):
self.forward_train()
self.optimizer_net.zero_grad()
self.backward_train()
self.optimizer_net.step()
self.clamp_weights()
def clamp_weights(self):
for module in self.net.modules():
if(hasattr(module, 'weight') and module.kernel_size==(1,1)):
module.weight.data = torch.clamp(module.weight.data,min=0)
def set_input(self, data):
self.input_ref = data['ref']
self.input_p0 = data['p0']
self.input_p1 = data['p1']
self.input_judge = data['judge']
if(self.use_gpu):
self.input_ref = self.input_ref.to(device=self.gpu_ids[0])
self.input_p0 = self.input_p0.to(device=self.gpu_ids[0])
self.input_p1 = self.input_p1.to(device=self.gpu_ids[0])
self.input_judge = self.input_judge.to(device=self.gpu_ids[0])
self.var_ref = Variable(self.input_ref,requires_grad=True)
self.var_p0 = Variable(self.input_p0,requires_grad=True)
self.var_p1 = Variable(self.input_p1,requires_grad=True)
def forward_train(self): # run forward pass
# print(self.net.module.scaling_layer.shift)
# print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item())
self.d0 = self.forward(self.var_ref, self.var_p0)
self.d1 = self.forward(self.var_ref, self.var_p1)
self.acc_r = self.compute_accuracy(self.d0,self.d1,self.input_judge)
self.var_judge = Variable(1.*self.input_judge).view(self.d0.size())
self.loss_total = self.rankLoss.forward(self.d0, self.d1, self.var_judge*2.-1.)
return self.loss_total
def backward_train(self):
torch.mean(self.loss_total).backward()
def compute_accuracy(self,d0,d1,judge):
''' d0, d1 are Variables, judge is a Tensor '''
d1_lt_d0 = (d1<d0).cpu().data.numpy().flatten()
judge_per = judge.cpu().numpy().flatten()
return d1_lt_d0*judge_per + (1-d1_lt_d0)*(1-judge_per)
def get_current_errors(self):
retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()),
('acc_r', self.acc_r)])
for key in retDict.keys():
retDict[key] = np.mean(retDict[key])
return retDict
def get_current_visuals(self):
zoom_factor = 256/self.var_ref.data.size()[2]
ref_img = util.tensor2im(self.var_ref.data)
p0_img = util.tensor2im(self.var_p0.data)
p1_img = util.tensor2im(self.var_p1.data)
ref_img_vis = zoom(ref_img,[zoom_factor, zoom_factor, 1],order=0)
p0_img_vis = zoom(p0_img,[zoom_factor, zoom_factor, 1],order=0)
p1_img_vis = zoom(p1_img,[zoom_factor, zoom_factor, 1],order=0)
return OrderedDict([('ref', ref_img_vis),
('p0', p0_img_vis),
('p1', p1_img_vis)])
def save(self, path, label):
if(self.use_gpu):
self.save_network(self.net.module, path, '', label)
else:
self.save_network(self.net, path, '', label)
self.save_network(self.rankLoss.net, path, 'rank', label)
def update_learning_rate(self,nepoch_decay):
lrd = self.lr / nepoch_decay
lr = self.old_lr - lrd
for param_group in self.optimizer_net.param_groups:
param_group['lr'] = lr
print('update lr [%s] decay: %f -> %f' % (type,self.old_lr, lr))
self.old_lr = lr
def score_2afc_dataset(data_loader, func, name=''):
''' Function computes Two Alternative Forced Choice (2AFC) score using
distance function 'func' in dataset 'data_loader'
INPUTS
data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside
func - callable distance function - calling d=func(in0,in1) should take 2
pytorch tensors with shape Nx3xXxY, and return numpy array of length N
OUTPUTS
[0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators
[1] - dictionary with following elements
d0s,d1s - N arrays containing distances between reference patch to perturbed patches
gts - N array in [0,1], preferred patch selected by human evaluators
(closer to "0" for left patch p0, "1" for right patch p1,
"0.6" means 60pct people preferred right patch, 40pct preferred left)
scores - N array in [0,1], corresponding to what percentage function agreed with humans
CONSTS
N - number of test triplets in data_loader
'''
d0s = []
d1s = []
gts = []
for data in tqdm(data_loader.load_data(), desc=name):
d0s+=func(data['ref'],data['p0']).data.cpu().numpy().flatten().tolist()
d1s+=func(data['ref'],data['p1']).data.cpu().numpy().flatten().tolist()
gts+=data['judge'].cpu().numpy().flatten().tolist()
d0s = np.array(d0s)
d1s = np.array(d1s)
gts = np.array(gts)
scores = (d0s<d1s)*(1.-gts) + (d1s<d0s)*gts + (d1s==d0s)*.5
return(np.mean(scores), dict(d0s=d0s,d1s=d1s,gts=gts,scores=scores))
def score_jnd_dataset(data_loader, func, name=''):
''' Function computes JND score using distance function 'func' in dataset 'data_loader'
INPUTS
data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside
func - callable distance function - calling d=func(in0,in1) should take 2
pytorch tensors with shape Nx3xXxY, and return pytorch array of length N
OUTPUTS
[0] - JND score in [0,1], mAP score (area under precision-recall curve)
[1] - dictionary with following elements
ds - N array containing distances between two patches shown to human evaluator
sames - N array containing fraction of people who thought the two patches were identical
CONSTS
N - number of test triplets in data_loader
'''
ds = []
gts = []
for data in tqdm(data_loader.load_data(), desc=name):
ds+=func(data['p0'],data['p1']).data.cpu().numpy().tolist()
gts+=data['same'].cpu().numpy().flatten().tolist()
sames = np.array(gts)
ds = np.array(ds)
sorted_inds = np.argsort(ds)
ds_sorted = ds[sorted_inds]
sames_sorted = sames[sorted_inds]
TPs = np.cumsum(sames_sorted)
FPs = np.cumsum(1-sames_sorted)
FNs = np.sum(sames_sorted)-TPs
precs = TPs/(TPs+FPs)
recs = TPs/(TPs+FNs)
score = util.voc_ap(recs,precs)
return(score, dict(ds=ds,sames=sames))
|