File size: 25,816 Bytes
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d9f15f
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from __future__ import annotations
import numpy as np
import gradio as gr

import os
import pathlib
import gc
import torch
import dlib
import cv2
import PIL
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F
import torchvision
from torchvision import transforms, utils
from argparse import Namespace
from datasets import augmentations
from huggingface_hub import hf_hub_download
from scripts.align_all_parallel import align_face
from latent_optimization import latent_optimization
from utils.inference_utils import save_image, load_image, visualize, get_video_crop_parameter, tensor2cv2, tensor2label, labelcolormap
from models.psp import pSp
from models.bisenet.model import BiSeNet
from models.stylegan2.model import Generator

class Model():
    def __init__(self, device):
        super().__init__()
        
        self.device = device
        self.task_name = None
        self.editing_w = None
        self.pspex = None
        self.landmarkpredictor = dlib.shape_predictor(hf_hub_download('PKUWilliamYang/VToonify', 'models/shape_predictor_68_face_landmarks.dat'))
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
            ])
        self.to_tensor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        self.maskpredictor = BiSeNet(n_classes=19)
        self.maskpredictor.load_state_dict(torch.load(hf_hub_download('PKUWilliamYang/VToonify', 'models/faceparsing.pth'), map_location='cpu'))
        self.maskpredictor.to(self.device).eval()
        self.parameters = {}
        self.parameters['inversion'] = {'path':'pretrained_models/styleganex_inversion.pt', 'image_path':'./data/ILip77SbmOE.png'}
        self.parameters['sr-32'] = {'path':'pretrained_models/styleganex_sr32.pt', 'image_path':'./data/pexels-daniel-xavier-1239291.jpg'}
        self.parameters['sr'] = {'path':'pretrained_models/styleganex_sr.pt', 'image_path':'./data/pexels-daniel-xavier-1239291.jpg'}
        self.parameters['sketch2face'] = {'path':'pretrained_models/styleganex_sketch2face.pt', 'image_path':'./data/234_sketch.jpg'}
        self.parameters['mask2face'] = {'path':'pretrained_models/styleganex_mask2face.pt', 'image_path':'./data/540.jpg'}
        self.parameters['edit_age'] = {'path':'pretrained_models/styleganex_edit_age.pt', 'image_path':'./data/390.mp4'}
        self.parameters['edit_hair'] = {'path':'pretrained_models/styleganex_edit_hair.pt', 'image_path':'./data/390.mp4'}
        self.parameters['toonify_pixar'] = {'path':'pretrained_models/styleganex_toonify_pixar.pt', 'image_path':'./data/pexels-anthony-shkraba-production-8136210.mp4'}
        self.parameters['toonify_cartoon'] = {'path':'pretrained_models/styleganex_toonify_cartoon.pt', 'image_path':'./data/pexels-anthony-shkraba-production-8136210.mp4'}
        self.parameters['toonify_arcane'] = {'path':'pretrained_models/styleganex_toonify_arcane.pt', 'image_path':'./data/pexels-anthony-shkraba-production-8136210.mp4'}        
        self.print_log = True
        self.editing_dicts = torch.load(hf_hub_download('PKUWilliamYang/StyleGANEX', 'direction_dics.pt'))
        self.generator = Generator(1024, 512, 8)
        self.model_type = None
        self.error_info = 'Error: no face detected! \
                               StyleGANEX uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. \
                               You can try several times or use other images until a face is detected, \
                               then switch back to the original image.'
        
    def load_model(self, task_name: str) -> None:
        if task_name == self.task_name:
            return
        if self.pspex is not None:
            del self.pspex
        torch.cuda.empty_cache()
        gc.collect()
        path = self.parameters[task_name]['path']
        local_path = hf_hub_download('PKUWilliamYang/StyleGANEX', path)
        ckpt = torch.load(local_path, map_location='cpu')
        opts = ckpt['opts']
        opts['checkpoint_path'] = local_path
        opts['device'] = self.device
        opts = Namespace(**opts)
        self.pspex = pSp(opts, ckpt).to(self.device).eval()
        self.pspex.latent_avg = self.pspex.latent_avg.to(self.device)
        if 'editing_w' in ckpt.keys():
            self.editing_w = ckpt['editing_w'].clone().to(self.device)   
        self.task_name = task_name  
        torch.cuda.empty_cache()
        gc.collect()

    def load_G_model(self, model_type: str) -> None:
        if model_type == self.model_type:
            return
        torch.cuda.empty_cache()
        gc.collect()
        local_path = hf_hub_download('rinong/stylegan-nada-models', model_type+'.pt')
        self.generator.load_state_dict(torch.load(local_path, map_location='cpu')['g_ema'], strict=False)
        self.generator.to(self.device).eval()
        self.model_type = model_type  
        torch.cuda.empty_cache()
        gc.collect()
        
    def tensor2np(self, img):
        tmp = ((img.cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)
        return tmp

    def process_sr(self, input_image: str, resize_scale: int, model: str) -> list[np.ndarray]:
        #false_image = np.zeros((256,256,3), np.uint8)
        #info = 'Error: no face detected! Please retry or change the photo.'
            
        if input_image is None:
            #return [false_image, false_image], 'Error: fail to load empty file.'
            raise gr.Error("Error: fail to load empty file.")
        frame = cv2.imread(input_image)
        if frame is None:
            #return [false_image, false_image], 'Error: fail to load the image.'
            raise gr.Error("Error: fail to load the image.")
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)            
            
        if model is None or model == 'SR for 32x':
            task_name = 'sr-32'
            resize_scale = 32
        else:
            task_name = 'sr'
            
        with torch.no_grad():
            paras = get_video_crop_parameter(frame, self.landmarkpredictor)
            if paras is None:
                #return [false_image, false_image], info
                raise gr.Error(self.error_info)
            h,w,top,bottom,left,right,scale = paras
            H, W = int(bottom-top), int(right-left)
            frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
            x1 = PIL.Image.fromarray(np.uint8(frame))
            x1 = augmentations.BilinearResize(factors=[resize_scale//4])(x1)
            x1_up = x1.resize((W, H))
            x2_up = align_face(np.array(x1_up), self.landmarkpredictor)
            if x2_up is None:
                #return [false_image, false_image], 'Error: no face detected! Please retry or change the photo.'
                raise gr.Error(self.error_info)
            x1_up = transforms.ToTensor()(x1_up).unsqueeze(dim=0).to(self.device) * 2 - 1
            x2_up = self.transform(x2_up).unsqueeze(dim=0).to(self.device)
            if self.print_log: print('image loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            y_hat = torch.clamp(self.pspex(x1=x1_up, x2=x2_up, use_skip=self.pspex.opts.use_skip, resize=False), -1, 1)

        return [self.tensor2np(x1_up[0]), self.tensor2np(y_hat[0])]
    
    
    def process_s2f(self, input_image: str, seed: int) -> np.ndarray:
        task_name = 'sketch2face'
        with torch.no_grad():
            x1 = transforms.ToTensor()(PIL.Image.open(input_image)).unsqueeze(0).to(self.device)
            if x1.shape[2] > 513:
                x1 = x1[:,:,(x1.shape[2]//2-256)//8*8:(x1.shape[2]//2+256)//8*8]
            if x1.shape[3] > 513:
                x1 = x1[:,:,:,(x1.shape[3]//2-256)//8*8:(x1.shape[3]//2+256)//8*8]
            x1 = x1[:,0:1] # uploaded files will be transformed to 3-channel RGB image!
            if self.print_log: print('image loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            self.pspex.train()
            torch.manual_seed(seed)
            y_hat = self.pspex(x1=x1, resize=False, latent_mask=[8,9,10,11,12,13,14,15,16,17], use_skip=self.pspex.opts.use_skip,
                                  inject_latent= self.pspex.decoder.style(torch.randn(1, 512).to(self.device)).unsqueeze(1).repeat(1,18,1) * 0.7)  
            y_hat = torch.clamp(y_hat, -1, 1)
            self.pspex.eval()
        return self.tensor2np(y_hat[0])
    
    def process_m2f(self, input_image: str, input_type: str, seed: int) -> list[np.ndarray]:
        #false_image = np.zeros((256,256,3), np.uint8)
        if input_image is None:
            raise gr.Error('Error: fail to load empty file.' )
            #return [false_image, false_image], 'Error: fail to load empty file.'        
        task_name = 'mask2face'
        with torch.no_grad():
            if input_type == 'parsing mask':
                x1 = PIL.Image.open(input_image).getchannel(0) # uploaded files will be transformed to 3-channel RGB image!
                x1 = augmentations.ToOneHot(19)(x1)
                x1 = transforms.ToTensor()(x1).unsqueeze(dim=0).float().to(self.device)
                #print(x1.shape)
            else:
                frame = cv2.imread(input_image)
                if frame is None:
                    #return [false_image, false_image], 'Error: fail to load the image.' 
                    raise gr.Error('Error: fail to load the image.' )
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                paras = get_video_crop_parameter(frame, self.landmarkpredictor)        
                if paras is None:
                    #return [false_image, false_image], 'Error: no face detected! Please retry or change the photo.'
                    raise gr.Error(self.error_info)
                h,w,top,bottom,left,right,scale = paras
                H, W = int(bottom-top), int(right-left)
                frame = cv2.resize(frame, (w, h))[top:bottom, left:right]        
                # convert face image to segmentation mask
                x1 = self.to_tensor(frame).unsqueeze(0).to(self.device)
                # upsample image for precise segmentation
                x1 = F.interpolate(x1, scale_factor=2, mode='bilinear') 
                x1 = self.maskpredictor(x1)[0]
                x1 = F.interpolate(x1, scale_factor=0.5).argmax(dim=1)
                x1 = F.one_hot(x1, num_classes=19).permute(0, 3, 1, 2).float().to(self.device)   
                
            if x1.shape[2] > 513:
                x1 = x1[:,:,(x1.shape[2]//2-256)//8*8:(x1.shape[2]//2+256)//8*8]
            if x1.shape[3] > 513:
                x1 = x1[:,:,:,(x1.shape[3]//2-256)//8*8:(x1.shape[3]//2+256)//8*8]

            x1_viz = (tensor2label(x1[0], 19) / 192 * 256).astype(np.uint8)

            if self.print_log: print('image loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            self.pspex.train()
            torch.manual_seed(seed)
            y_hat = self.pspex(x1=x1, resize=False, latent_mask=[8,9,10,11,12,13,14,15,16,17], use_skip=self.pspex.opts.use_skip,
                                  inject_latent= self.pspex.decoder.style(torch.randn(1, 512).to(self.device)).unsqueeze(1).repeat(1,18,1) * 0.7)  
            y_hat = torch.clamp(y_hat, -1, 1)
            self.pspex.eval()
        return [x1_viz, self.tensor2np(y_hat[0])]
    
    
    def process_editing(self, input_image: str, scale_factor: float, model_type: str) -> np.ndarray:
        #false_image = np.zeros((256,256,3), np.uint8)
        #info = 'Error: no face detected! Please retry or change the photo.'
            
        if input_image is None:
            #return false_image, false_image, 'Error: fail to load empty file.'
            raise gr.Error('Error: fail to load empty file.')
        frame = cv2.imread(input_image)
        if frame is None:
            #return false_image, false_image, 'Error: fail to load the image.'
            raise gr.Error('Error: fail to load the image.')
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)            
            
        if model_type is None or model_type == 'reduce age':
            task_name = 'edit_age'
        else:
            task_name = 'edit_hair'
            
        with torch.no_grad():
            paras = get_video_crop_parameter(frame, self.landmarkpredictor)
            if paras is None:
                #return false_image, false_image, info
                raise gr.Error(self.error_info)
            h,w,top,bottom,left,right,scale = paras
            H, W = int(bottom-top), int(right-left)
            frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
            x1 = self.transform(frame).unsqueeze(0).to(self.device)
            x2 = align_face(frame, self.landmarkpredictor)
            if x2 is None:
                #return false_image, 'Error: no face detected! Please retry or change the photo.'
                raise gr.Error(self.error_info)
            x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
            if self.print_log: print('image loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True, 
                        resize=False, editing_w= - scale_factor* self.editing_w[0:1])
            y_hat = torch.clamp(y_hat, -1, 1)

        return self.tensor2np(y_hat[0])

    def process_vediting(self, input_video: str, scale_factor: float, model_type: str, frame_num: int) -> tuple[list[np.ndarray], str]:
        #false_image = np.zeros((256,256,3), np.uint8)
        #info = 'Error: no face detected! Please retry or change the video.'
            
        if input_video is None:
            #return [false_image], 'default.mp4', 'Error: fail to load empty file.'
            raise gr.Error('Error: fail to load empty file.')
        video_cap = cv2.VideoCapture(input_video)
        success, frame = video_cap.read()
        if success is False:
            #return [false_image], 'default.mp4', 'Error: fail to load the video.' 
            raise gr.Error('Error: fail to load the video.')
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)         
        
        if model_type is None or model_type == 'reduce age':
            task_name = 'edit_age'
        else:
            task_name = 'edit_hair'
            
        with torch.no_grad():
            paras = get_video_crop_parameter(frame, self.landmarkpredictor)
            if paras is None:
                #return [false_image], 'default.mp4', info
                raise gr.Error(self.error_info)
            h,w,top,bottom,left,right,scale = paras
            H, W = int(bottom-top), int(right-left)
            frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
            x1 = self.transform(frame).unsqueeze(0).to(self.device)
            x2 = align_face(frame, self.landmarkpredictor)
            if x2 is None:
                #return [false_image], 'default.mp4', info
                raise gr.Error(self.error_info)
            x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
            if self.print_log: print('first frame loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            videoWriter = cv2.VideoWriter('output.mp4', fourcc, video_cap.get(5), (4*W, 4*H))
            
            viz_frames = []
            for i in range(frame_num):
                if i > 0:
                    success, frame = video_cap.read()
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
                    x1 = self.transform(frame).unsqueeze(0).to(self.device)
                y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True, 
                        resize=False, editing_w= - scale_factor * self.editing_w[0:1])
                y_hat = torch.clamp(y_hat, -1, 1)
                videoWriter.write(tensor2cv2(y_hat[0].cpu()))
                if i < min(frame_num, 4):
                    viz_frames += [self.tensor2np(y_hat[0])]
                
            videoWriter.release()    
            
        return viz_frames, 'output.mp4'
    
    
    def process_toonify(self, input_image: str, style_type: str) -> np.ndarray:
        #false_image = np.zeros((256,256,3), np.uint8)
        #info = 'Error: no face detected! Please retry or change the photo.'
            
        if input_image is None:
            raise gr.Error('Error: fail to load empty file.')
            #return false_image, false_image, 'Error: fail to load empty file.'
        frame = cv2.imread(input_image)
        if frame is None:
            raise gr.Error('Error: fail to load the image.')
            #return false_image, false_image, 'Error: fail to load the image.'
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)            
            
        if style_type is None or style_type == 'Pixar':
            task_name = 'toonify_pixar'
        elif style_type == 'Cartoon':
            task_name = 'toonify_cartoon'
        else:
            task_name = 'toonify_arcane'
            
        with torch.no_grad():
            paras = get_video_crop_parameter(frame, self.landmarkpredictor)
            if paras is None:
                raise gr.Error(self.error_info)
                #return false_image, false_image, info
            h,w,top,bottom,left,right,scale = paras
            H, W = int(bottom-top), int(right-left)
            frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
            x1 = self.transform(frame).unsqueeze(0).to(self.device)
            x2 = align_face(frame, self.landmarkpredictor)
            if x2 is None:
                raise gr.Error(self.error_info)
                #return false_image, 'Error: no face detected! Please retry or change the photo.'
            x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
            if self.print_log: print('image loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True, resize=False)
            y_hat = torch.clamp(y_hat, -1, 1)

        return self.tensor2np(y_hat[0])   


    def process_vtoonify(self, input_video: str, style_type: str, frame_num: int) -> tuple[list[np.ndarray], str]:
        #false_image = np.zeros((256,256,3), np.uint8)
        #info = 'Error: no face detected! Please retry or change the video.'
            
        if input_video is None:
            raise gr.Error('Error: fail to load empty file.')
            #return [false_image], 'default.mp4', 'Error: fail to load empty file.'
        video_cap = cv2.VideoCapture(input_video)
        success, frame = video_cap.read()
        if success is False:
            raise gr.Error('Error: fail to load the video.')
            #return [false_image], 'default.mp4', 'Error: fail to load the video.'        
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)         
        
        if style_type is None or style_type == 'Pixar':
            task_name = 'toonify_pixar'
        elif style_type == 'Cartoon':
            task_name = 'toonify_cartoon'
        else:
            task_name = 'toonify_arcane'
            
        with torch.no_grad():
            paras = get_video_crop_parameter(frame, self.landmarkpredictor)
            if paras is None:
                raise gr.Error(self.error_info)
                #return [false_image], 'default.mp4', info
            h,w,top,bottom,left,right,scale = paras
            H, W = int(bottom-top), int(right-left)
            frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
            x1 = self.transform(frame).unsqueeze(0).to(self.device)
            x2 = align_face(frame, self.landmarkpredictor)
            if x2 is None:
                raise gr.Error(self.error_info)
                #return [false_image], 'default.mp4', info
            x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
            if self.print_log: print('first frame loaded')
            self.load_model(task_name)
            if self.print_log: print('model %s loaded'%(task_name))
            
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            videoWriter = cv2.VideoWriter('output.mp4', fourcc, video_cap.get(5), (4*W, 4*H))
            
            viz_frames = []
            for i in range(frame_num):
                if i > 0:
                    success, frame = video_cap.read()
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
                    x1 = self.transform(frame).unsqueeze(0).to(self.device)
                y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True, resize=False)
                y_hat = torch.clamp(y_hat, -1, 1)
                videoWriter.write(tensor2cv2(y_hat[0].cpu()))
                if i < min(frame_num, 4):
                    viz_frames += [self.tensor2np(y_hat[0])]
                
            videoWriter.release()    
            
        return viz_frames, 'output.mp4'   
    
    
    def process_inversion(self, input_image: str, optimize: str, input_latent: file-object, editing_options: str, 
                          scale_factor: float, seed: int) -> tuple[np.ndarray, np.ndarray]:
        #false_image = np.zeros((256,256,3), np.uint8)
        #info = 'Error: no face detected! Please retry or change the photo.'
            
        if input_image is None:
            raise gr.Error('Error: fail to load empty file.')
            #return false_image, false_image, 'Error: fail to load empty file.'
        frame = cv2.imread(input_image)
        if frame is None:
            raise gr.Error('Error: fail to load the image.')
            #return false_image, false_image, 'Error: fail to load the image.'
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        
        task_name = 'inversion'
        self.load_model(task_name)
        if self.print_log: print('model %s loaded'%(task_name))
        if input_latent is not None:
            if '.pt' not in input_latent.name:
                raise gr.Error('Error: the latent format is wrong')
                #return false_image, false_image, 'Error: the latent format is wrong'
            latents = torch.load(input_latent.name)
            if 'wplus' not in latents.keys() or 'f' not in latents.keys():
                raise gr.Error('Error: the latent format is wrong')
                #return false_image, false_image, 'Error: the latent format is wrong'
            wplus = latents['wplus'].to(self.device) # w+
            f = [latents['f'][0].to(self.device)]    # f
        elif optimize == 'Latent optimization':
            wplus, f, _, _, _ = latent_optimization(frame, self.pspex, self.landmarkpredictor, 
                                                                     step=500, device=self.device)
        else:
            with torch.no_grad():
                paras = get_video_crop_parameter(frame, self.landmarkpredictor)
                if paras is None:
                    raise gr.Error(self.error_info)
                    #return false_image, false_image, info
                h,w,top,bottom,left,right,scale = paras
                H, W = int(bottom-top), int(right-left)
                frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
                x1 = self.transform(frame).unsqueeze(0).to(self.device)
                x2 = align_face(frame, self.landmarkpredictor)
                if x2 is None:
                    raise gr.Error(self.error_info)
                    #return false_image, false_image, 'Error: no face detected! Please retry or change the photo.'
                x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
                if self.print_log: print('image loaded')
                wplus = self.pspex.encoder(x2) + self.pspex.latent_avg.unsqueeze(0)
                _, f =  self.pspex.encoder(x1, return_feat=True)
            
        with torch.no_grad():
            y_hat, _ = self.pspex.decoder([wplus], input_is_latent=True, first_layer_feature=f)
            y_hat = torch.clamp(y_hat, -1, 1)

            if 'Style Mixing' in editing_options:
                torch.manual_seed(seed)
                wplus[:, 8:] = self.pspex.decoder.style(torch.randn(1, 512).to(self.device)).unsqueeze(1).repeat(1,10,1) * 0.7
                y_hat_edit, _ = self.pspex.decoder([wplus], input_is_latent=True, first_layer_feature=f)
            elif 'Attribute Editing' in editing_options: 
                editing_w = self.editing_dicts[editing_options[19:]].to(self.device)
                y_hat_edit, _ = self.pspex.decoder([wplus+scale_factor*editing_w], input_is_latent=True, first_layer_feature=f)
            elif 'Domain Transfer' in editing_options: 
                self.load_G_model(editing_options[17:])
                if self.print_log: print('model %s loaded'%(editing_options[17:]))
                y_hat_edit, _ = self.generator([wplus], input_is_latent=True, first_layer_feature=f)
            else:
                y_hat_edit = y_hat
            y_hat_edit = torch.clamp(y_hat_edit, -1, 1)
            
        return self.tensor2np(y_hat[0]), self.tensor2np(y_hat_edit[0])