Spaces:
Running
on
T4
Running
on
T4
File size: 14,885 Bytes
ac4ce84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE
from models.stylegan2.model import EqualLinear
class GradualStyleBlock(Module):
def __init__(self, in_c, out_c, spatial, max_pooling=False):
super(GradualStyleBlock, self).__init__()
self.out_c = out_c
self.spatial = spatial
self.max_pooling = max_pooling
num_pools = int(np.log2(spatial))
modules = []
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()]
for i in range(num_pools - 1):
modules += [
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()
]
self.convs = nn.Sequential(*modules)
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
def forward(self, x):
x = self.convs(x)
# To make E accept more general H*W images, we add global average pooling to
# resize all features to 1*1*512 before mapping to latent codes
if self.max_pooling:
x = F.adaptive_max_pool2d(x, 1) ##### modified
else:
x = F.adaptive_avg_pool2d(x, 1) ##### modified
x = x.view(-1, self.out_c)
x = self.linear(x)
return x
class AdaptiveInstanceNorm(nn.Module):
def __init__(self, fin, style_dim=512):
super().__init__()
self.norm = nn.InstanceNorm2d(fin, affine=False)
self.style = nn.Linear(style_dim, fin * 2)
self.style.bias.data[:fin] = 1
self.style.bias.data[fin:] = 0
def forward(self, input, style):
style = self.style(style).unsqueeze(2).unsqueeze(3)
gamma, beta = style.chunk(2, 1)
out = self.norm(input)
out = gamma * out + beta
return out
class FusionLayer(Module): ##### modified
def __init__(self, inchannel, outchannel, use_skip_torgb=True, use_att=0):
super(FusionLayer, self).__init__()
self.transform = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU())
self.fusion_out = nn.Conv2d(outchannel*2, outchannel, kernel_size=3, stride=1, padding=1)
self.fusion_out.weight.data *= 0.01
self.fusion_out.weight[:,0:outchannel,1,1].data += torch.eye(outchannel)
self.use_skip_torgb = use_skip_torgb
if use_skip_torgb:
self.fusion_skip = nn.Conv2d(3+outchannel, 3, kernel_size=3, stride=1, padding=1)
self.fusion_skip.weight.data *= 0.01
self.fusion_skip.weight[:,0:3,1,1].data += torch.eye(3)
self.use_att = use_att
if use_att:
modules = []
modules.append(nn.Linear(512, outchannel))
for _ in range(use_att):
modules.append(nn.LeakyReLU(negative_slope=0.2, inplace=True))
modules.append(nn.Linear(outchannel, outchannel))
modules.append(nn.LeakyReLU(negative_slope=0.2, inplace=True))
self.linear = Sequential(*modules)
self.norm = AdaptiveInstanceNorm(outchannel*2, outchannel)
self.conv = nn.Conv2d(outchannel*2, 1, 3, 1, 1, bias=True)
def forward(self, feat, out, skip, editing_w=None):
x = self.transform(feat)
# similar to VToonify, use editing vector as condition
# fuse encoder feature and decoder feature with a predicted attention mask m_E
# if self.use_att = False, just fuse them with a simple conv layer
if self.use_att and editing_w is not None:
label = self.linear(editing_w)
m_E = (F.relu(self.conv(self.norm(torch.cat([out, abs(out-x)], dim=1), label)))).tanh()
x = x * m_E
out = self.fusion_out(torch.cat((out, x), dim=1))
if self.use_skip_torgb:
skip = self.fusion_skip(torch.cat((skip, x), dim=1))
return out, skip
class ResnetBlock(nn.Module):
def __init__(self, dim):
super(ResnetBlock, self).__init__()
self.conv_block = nn.Sequential(Conv2d(dim, dim, 3, 1, 1),
nn.LeakyReLU(),
Conv2d(dim, dim, 3, 1, 1))
self.relu = nn.LeakyReLU()
def forward(self, x):
out = x + self.conv_block(x)
return self.relu(out)
# trainable light-weight translation network T
# for sketch/mask-to-face translation,
# we add a trainable T to map y to an intermediate domain where E can more easily extract features.
class ResnetGenerator(nn.Module):
def __init__(self, in_channel=19, res_num=2):
super(ResnetGenerator, self).__init__()
modules = []
modules.append(Conv2d(in_channel, 16, 3, 2, 1))
modules.append(nn.LeakyReLU())
modules.append(Conv2d(16, 16, 3, 2, 1))
modules.append(nn.LeakyReLU())
for _ in range(res_num):
modules.append(ResnetBlock(16))
for _ in range(2):
modules.append(nn.ConvTranspose2d(16, 16, 3, 2, 1, output_padding=1))
modules.append(nn.LeakyReLU())
modules.append(Conv2d(16, 64, 3, 1, 1, bias=False))
modules.append(BatchNorm2d(64))
modules.append(PReLU(64))
self.model = Sequential(*modules)
def forward(self, input):
return self.model(input)
class GradualStyleEncoder(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(GradualStyleEncoder, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
# for sketch/mask-to-face translation, add a new network T
if opts.input_nc != 3:
self.input_label_layer = ResnetGenerator(opts.input_nc, opts.res_num)
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
self.styles = nn.ModuleList()
self.style_count = opts.n_styles
self.coarse_ind = 3
self.middle_ind = 7
for i in range(self.style_count):
if i < self.coarse_ind:
style = GradualStyleBlock(512, 512, 16, 'max_pooling' in opts and opts.max_pooling)
elif i < self.middle_ind:
style = GradualStyleBlock(512, 512, 32, 'max_pooling' in opts and opts.max_pooling)
else:
style = GradualStyleBlock(512, 512, 64, 'max_pooling' in opts and opts.max_pooling)
self.styles.append(style)
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
# we concatenate pSp features in the middle layers and
# add a convolution layer to map the concatenated features to the first-layer input feature f of G.
self.featlayer = nn.Conv2d(768, 512, kernel_size=1, stride=1, padding=0) ##### modified
self.skiplayer = nn.Conv2d(768, 3, kernel_size=1, stride=1, padding=0) ##### modified
# skip connection
if 'use_skip' in opts and opts.use_skip: ##### modified
self.fusion = nn.ModuleList()
channels = [[256,512], [256,512], [256,512], [256,512], [128,512], [64,256], [64,128]]
# opts.skip_max_layer: how many layers are skipped to the decoder
for inc, outc in channels[:max(1, min(7, opts.skip_max_layer))]: # from 4 to 256
self.fusion.append(FusionLayer(inc, outc, opts.use_skip_torgb, opts.use_att))
def _upsample_add(self, x, y):
'''Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
'''
_, _, H, W = y.size()
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
# return_feat: return f
# return_full: return f and the skipped encoder features
# return [out, feats]
# out is the style latent code w+
# feats[0] is f for the 1st conv layer, feats[1] is f for the 1st torgb layer
# feats[2-8] is the skipped encoder features
def forward(self, x, return_feat=False, return_full=False): ##### modified
if x.shape[1] != 3:
x = self.input_label_layer(x)
else:
x = self.input_layer(x)
c256 = x ##### modified
latents = []
modulelist = list(self.body._modules.values())
for i, l in enumerate(modulelist):
x = l(x)
if i == 2: ##### modified
c128 = x
elif i == 6:
c1 = x
elif i == 10: ##### modified
c21 = x ##### modified
elif i == 15: ##### modified
c22 = x ##### modified
elif i == 20:
c2 = x
elif i == 23:
c3 = x
for j in range(self.coarse_ind):
latents.append(self.styles[j](c3))
p2 = self._upsample_add(c3, self.latlayer1(c2))
for j in range(self.coarse_ind, self.middle_ind):
latents.append(self.styles[j](p2))
p1 = self._upsample_add(p2, self.latlayer2(c1))
for j in range(self.middle_ind, self.style_count):
latents.append(self.styles[j](p1))
out = torch.stack(latents, dim=1)
if not return_feat:
return out
feats = [self.featlayer(torch.cat((c21, c22, c2), dim=1)), self.skiplayer(torch.cat((c21, c22, c2), dim=1))]
if return_full: ##### modified
feats += [c2, c2, c22, c21, c1, c128, c256]
return out, feats
# only compute the first-layer feature f
# E_F in the paper
def get_feat(self, x): ##### modified
# for sketch/mask-to-face translation
# use a trainable light-weight translation network T
if x.shape[1] != 3:
x = self.input_label_layer(x)
else:
x = self.input_layer(x)
latents = []
modulelist = list(self.body._modules.values())
for i, l in enumerate(modulelist):
x = l(x)
if i == 10: ##### modified
c21 = x ##### modified
elif i == 15: ##### modified
c22 = x ##### modified
elif i == 20:
c2 = x
break
return self.featlayer(torch.cat((c21, c22, c2), dim=1))
class BackboneEncoderUsingLastLayerIntoW(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
print('Using BackboneEncoderUsingLastLayerIntoW')
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
self.linear = EqualLinear(512, 512, lr_mul=1)
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_pool(x)
x = x.view(-1, 512)
x = self.linear(x)
return x
class BackboneEncoderUsingLastLayerIntoWPlus(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__()
print('Using BackboneEncoderUsingLastLayerIntoWPlus')
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.n_styles = opts.n_styles
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_layer_2 = Sequential(BatchNorm2d(512),
torch.nn.AdaptiveAvgPool2d((7, 7)),
Flatten(),
Linear(512 * 7 * 7, 512))
self.linear = EqualLinear(512, 512 * self.n_styles, lr_mul=1)
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer_2(x)
x = self.linear(x)
x = x.view(-1, self.n_styles, 512)
return x
|