File size: 15,918 Bytes
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dea586
 
 
 
 
ac1883f
 
31083ae
5dea586
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dea586
 
 
 
 
ac1883f
 
31083ae
5dea586
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dea586
 
 
 
 
 
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a25359
ac1883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import annotations
from huggingface_hub import hf_hub_download
import numpy as np
import gradio as gr


def create_demo_sr(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Face Super Resolution')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='filepath')
                model_type = gr.Radio(label='Model Type', choices=['SR for 32x','SR for 4x-48x'], value='SR for 32x')
                resize_scale = gr.Slider(label='Resize Scale',
                                            minimum=4,
                                            maximum=48,
                                            value=32,
                                            step=4)                                
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['pexels-daniel-xavier-1239291.jpg', 'SR for 32x', 32],
                               ['ILip77SbmOE.png', 'SR for 32x', 32],
                               ['ILip77SbmOE.png', 'SR for 4x-48x', 48],
                              ],
                    inputs = [input_image, model_type, resize_scale],
                )                
            with gr.Column():
                #lrinput = gr.Image(label='Low-resolution input',type='numpy', interactive=False)
                #result = gr.Image(label='Output',type='numpy', interactive=False)
                result = gr.Gallery(label='LR input and Output',
                                    elem_id='gallery').style(grid=2,
                                                             height='auto')    

        inputs = [
            input_image,
            resize_scale,
            model_type,
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[result],
                         api_name='sr')
    return demo
    
def create_demo_s2f(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Sketch-to-Face Translation')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='filepath')
                gr.Markdown("""Note: Input will be cropped if larger than 512x512.""")
                seed = gr.Slider(label='Seed for appearance',
                                    minimum=0,
                                    maximum=2147483647,
                                    step=1,
                                    randomize=True)
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['234_sketch.jpg', 1024]],
                    inputs = [input_image, seed],
                )                
            with gr.Column():
                result = gr.Image(label='Output',type='numpy', interactive=False) 

        inputs = [
            input_image, seed
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[result],
                         api_name='s2f')
    return demo


def create_demo_m2f(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Mask-to-Face Translation')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='filepath') 
                input_type = gr.Radio(label='Input Type', choices=['color image','parsing mask'], value='color image')
                seed = gr.Slider(label='Seed for appearance',
                                    minimum=0,
                                    maximum=2147483647,
                                    step=1,
                                    randomize=True)
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['ILip77SbmOE.png', 'color image', 4], ['ILip77SbmOE_mask.png', 'parsing mask', 4]],
                    inputs = [input_image, input_type, seed],
                )                
            with gr.Column():
                #vizmask = gr.Image(label='Visualized mask',type='numpy', interactive=False)
                #result = gr.Image(label='Output',type='numpy', interactive=False) 
                result = gr.Gallery(label='Visualized mask and Output',
                                    elem_id='gallery').style(grid=2,
                                                             height='auto')                

        inputs = [
            input_image, input_type, seed
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[result],
                         api_name='m2f')
    return demo

def create_demo_editing(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Video Face Editing (for image input)')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='filepath') 
                model_type = gr.Radio(label='Editing Type', choices=['reduce age','light hair color'], value='color image')
                scale_factor = gr.Slider(label='editing degree (-2~2)',
                                    minimum=-2,
                                    maximum=2,
                                    value=1,
                                    step=0.1)
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['ILip77SbmOE.png', 'reduce age', -2], 
                               ['ILip77SbmOE.png', 'light hair color', 1]],
                    inputs = [input_image, model_type, scale_factor],
                )                
            with gr.Column():
                result = gr.Image(label='Output',type='numpy', interactive=False) 

        inputs = [
            input_image, scale_factor, model_type
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[result],
                         api_name='editing')
    return demo

def create_demo_toonify(process):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Video Face Toonification (for image input)')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='filepath') 
                style_type = gr.Radio(label='Style Type', choices=['Pixar','Cartoon','Arcane'], value='Pixar')                
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['ILip77SbmOE.png', 'Pixar'], ['ILip77SbmOE.png', 'Cartoon'], ['ILip77SbmOE.png', 'Arcane']],
                    inputs = [input_image, style_type],
                )                
            with gr.Column():
                result = gr.Image(label='Output',type='numpy', interactive=False) 

        inputs = [
            input_image, style_type
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[result],
                         api_name='toonify')
    return demo


def create_demo_vediting(process, max_frame_num = 4):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Video Face Editing (for video input)')
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(source='upload', mirror_webcam=False, type='filepath') 
                model_type = gr.Radio(label='Editing Type', choices=['reduce age','light hair color'], value='color image')
                scale_factor = gr.Slider(label='editing degree (-2~2)',
                                    minimum=-2,
                                    maximum=2,
                                    value=1,
                                    step=0.1)
                info = ''
                if max_frame_num < 100:
                    info =  '(full video editing is not allowed so as not to slow down the demo, \
                            but you can duplicate the Space to modify the number limit to a large value)'
                frame_num = gr.Slider(label='Number of frames to edit' + info,
                                    minimum=1,
                                    maximum=max_frame_num,
                                    value=4,
                                    step=1)    
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['684.mp4', 'reduce age', 1.5, 2], 
                               ['684.mp4', 'light hair color', 0.7, 2]],
                    inputs = [input_video, model_type, scale_factor],
                )                
            with gr.Column():
                viz_result = gr.Gallery(label='Several edited frames', elem_id='gallery').style(grid=2, height='auto')  
                result = gr.Video(label='Output', type='mp4', interactive=False) 

        inputs = [
            input_video, scale_factor, model_type, frame_num
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[viz_result, result],
                         api_name='vediting')
    return demo

def create_demo_vtoonify(process, max_frame_num = 4):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Video Face Toonification (for video input)')
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(source='upload', mirror_webcam=False, type='filepath') 
                style_type = gr.Radio(label='Style Type', choices=['Pixar','Cartoon','Arcane'], value='Pixar')
                info = ''
                if max_frame_num < 100:
                    info =  '(full video toonify is not allowed so as not to slow down the demo, \
                            but you can duplicate the Space to modify the number limit from 4 to a large value)'
                frame_num = gr.Slider(label='Number of frames to toonify' + info,
                                    minimum=1,
                                    maximum=max_frame_num,
                                    value=4,
                                    step=1)              
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['529_2.mp4', 'Arcane'],
                               ['pexels-anthony-shkraba-production-8136210.mp4', 'Pixar'], 
                               ['684.mp4', 'Cartoon']],
                    inputs = [input_video, style_type],
                )                
            with gr.Column():
                viz_result = gr.Gallery(label='Several toonified frames', elem_id='gallery').style(grid=2, height='auto')  
                result = gr.Video(label='Output', type='mp4', interactive=False) 

        inputs = [
            input_video, style_type, frame_num
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[viz_result, result],
                         api_name='vtoonify')
    return demo

def create_demo_inversion(process, allow_optimization=False):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## StyleGANEX Inversion for Editing')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='filepath') 
                info = ''
                if allow_optimization == False:
                    info = ' (latent optimization is not allowed so as not to slow down the demo, \
                    but you can duplicate the Space to modify the option or directly upload an optimized latent file. \
                    The file can be computed by inversion.py from the github page or colab)'
                optimize = gr.Radio(label='Whether optimize latent' + info, choices=['No optimization','Latent optimization'], 
                                    value='No optimization', interactive=allow_optimization)
                input_latent = gr.File(label='Optimized latent code (optional)', file_types=[".pt"])
                editing_options = gr.Dropdown(['None', 'Style Mixing', 
                                               'Attribute Editing: smile', 
                                               'Attribute Editing: open_eye', 
                                               'Attribute Editing: open_mouth', 
                                               'Attribute Editing: pose', 
                                               'Attribute Editing: reduce_age', 
                                               'Attribute Editing: glasses', 
                                               'Attribute Editing: light_hair_color', 
                                               'Attribute Editing: slender', 
                                               'Domain Transfer: disney_princess',
                                               'Domain Transfer: vintage_comics',
                                               'Domain Transfer: pixar',
                                               'Domain Transfer: edvard_munch',
                                               'Domain Transfer: modigliani',
                                              ], 
                                              label="editing options (based on StyleGAN-NADA, InterFaceGAN, LowRankGAN)",
                                              value='None')
                scale_factor = gr.Slider(label='editing degree (-2~2) for Attribute Editing',
                                    minimum=-2,
                                    maximum=2,
                                    value=2,
                                    step=0.1)
                seed = gr.Slider(label='Appearance Seed for Style Mixing',
                                    minimum=0,
                                    maximum=2147483647,
                                    step=1,
                                    randomize=True)
                #input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                run_button = gr.Button(label='Run')
                gr.Examples(
                    examples =[['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Domain Transfer: vintage_comics'],
                               ['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Attribute Editing: smile'],
                               ['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Style Mixing'],
                              ], 
                    inputs = [input_image, input_latent, editing_options],
                )                
            with gr.Column():
                result = gr.Image(label='Inversion output',type='numpy', interactive=False) 
                editing_result = gr.Image(label='Editing output',type='numpy', interactive=False) 

        inputs = [
            input_image, optimize, input_latent, editing_options, scale_factor, seed
        ]
        run_button.click(fn=process,
                         inputs=inputs,
                         outputs=[result, editing_result],
                         api_name='inversion')
    return demo