Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module | |
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE | |
from models.stylegan2.model import EqualLinear | |
class GradualStyleBlock(Module): | |
def __init__(self, in_c, out_c, spatial, max_pooling=False): | |
super(GradualStyleBlock, self).__init__() | |
self.out_c = out_c | |
self.spatial = spatial | |
self.max_pooling = max_pooling | |
num_pools = int(np.log2(spatial)) | |
modules = [] | |
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), | |
nn.LeakyReLU()] | |
for i in range(num_pools - 1): | |
modules += [ | |
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), | |
nn.LeakyReLU() | |
] | |
self.convs = nn.Sequential(*modules) | |
self.linear = EqualLinear(out_c, out_c, lr_mul=1) | |
def forward(self, x): | |
x = self.convs(x) | |
# To make E accept more general H*W images, we add global average pooling to | |
# resize all features to 1*1*512 before mapping to latent codes | |
if self.max_pooling: | |
x = F.adaptive_max_pool2d(x, 1) ##### modified | |
else: | |
x = F.adaptive_avg_pool2d(x, 1) ##### modified | |
x = x.view(-1, self.out_c) | |
x = self.linear(x) | |
return x | |
class AdaptiveInstanceNorm(nn.Module): | |
def __init__(self, fin, style_dim=512): | |
super().__init__() | |
self.norm = nn.InstanceNorm2d(fin, affine=False) | |
self.style = nn.Linear(style_dim, fin * 2) | |
self.style.bias.data[:fin] = 1 | |
self.style.bias.data[fin:] = 0 | |
def forward(self, input, style): | |
style = self.style(style).unsqueeze(2).unsqueeze(3) | |
gamma, beta = style.chunk(2, 1) | |
out = self.norm(input) | |
out = gamma * out + beta | |
return out | |
class FusionLayer(Module): ##### modified | |
def __init__(self, inchannel, outchannel, use_skip_torgb=True, use_att=0): | |
super(FusionLayer, self).__init__() | |
self.transform = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU()) | |
self.fusion_out = nn.Conv2d(outchannel*2, outchannel, kernel_size=3, stride=1, padding=1) | |
self.fusion_out.weight.data *= 0.01 | |
self.fusion_out.weight[:,0:outchannel,1,1].data += torch.eye(outchannel) | |
self.use_skip_torgb = use_skip_torgb | |
if use_skip_torgb: | |
self.fusion_skip = nn.Conv2d(3+outchannel, 3, kernel_size=3, stride=1, padding=1) | |
self.fusion_skip.weight.data *= 0.01 | |
self.fusion_skip.weight[:,0:3,1,1].data += torch.eye(3) | |
self.use_att = use_att | |
if use_att: | |
modules = [] | |
modules.append(nn.Linear(512, outchannel)) | |
for _ in range(use_att): | |
modules.append(nn.LeakyReLU(negative_slope=0.2, inplace=True)) | |
modules.append(nn.Linear(outchannel, outchannel)) | |
modules.append(nn.LeakyReLU(negative_slope=0.2, inplace=True)) | |
self.linear = Sequential(*modules) | |
self.norm = AdaptiveInstanceNorm(outchannel*2, outchannel) | |
self.conv = nn.Conv2d(outchannel*2, 1, 3, 1, 1, bias=True) | |
def forward(self, feat, out, skip, editing_w=None): | |
x = self.transform(feat) | |
# similar to VToonify, use editing vector as condition | |
# fuse encoder feature and decoder feature with a predicted attention mask m_E | |
# if self.use_att = False, just fuse them with a simple conv layer | |
if self.use_att and editing_w is not None: | |
label = self.linear(editing_w) | |
m_E = (F.relu(self.conv(self.norm(torch.cat([out, abs(out-x)], dim=1), label)))).tanh() | |
x = x * m_E | |
out = self.fusion_out(torch.cat((out, x), dim=1)) | |
if self.use_skip_torgb: | |
skip = self.fusion_skip(torch.cat((skip, x), dim=1)) | |
return out, skip | |
class ResnetBlock(nn.Module): | |
def __init__(self, dim): | |
super(ResnetBlock, self).__init__() | |
self.conv_block = nn.Sequential(Conv2d(dim, dim, 3, 1, 1), | |
nn.LeakyReLU(), | |
Conv2d(dim, dim, 3, 1, 1)) | |
self.relu = nn.LeakyReLU() | |
def forward(self, x): | |
out = x + self.conv_block(x) | |
return self.relu(out) | |
# trainable light-weight translation network T | |
# for sketch/mask-to-face translation, | |
# we add a trainable T to map y to an intermediate domain where E can more easily extract features. | |
class ResnetGenerator(nn.Module): | |
def __init__(self, in_channel=19, res_num=2): | |
super(ResnetGenerator, self).__init__() | |
modules = [] | |
modules.append(Conv2d(in_channel, 16, 3, 2, 1)) | |
modules.append(nn.LeakyReLU()) | |
modules.append(Conv2d(16, 16, 3, 2, 1)) | |
modules.append(nn.LeakyReLU()) | |
for _ in range(res_num): | |
modules.append(ResnetBlock(16)) | |
for _ in range(2): | |
modules.append(nn.ConvTranspose2d(16, 16, 3, 2, 1, output_padding=1)) | |
modules.append(nn.LeakyReLU()) | |
modules.append(Conv2d(16, 64, 3, 1, 1, bias=False)) | |
modules.append(BatchNorm2d(64)) | |
modules.append(PReLU(64)) | |
self.model = Sequential(*modules) | |
def forward(self, input): | |
return self.model(input) | |
class GradualStyleEncoder(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(GradualStyleEncoder, self).__init__() | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
# for sketch/mask-to-face translation, add a new network T | |
if opts.input_nc != 3: | |
self.input_label_layer = ResnetGenerator(opts.input_nc, opts.res_num) | |
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
self.styles = nn.ModuleList() | |
self.style_count = opts.n_styles | |
self.coarse_ind = 3 | |
self.middle_ind = 7 | |
for i in range(self.style_count): | |
if i < self.coarse_ind: | |
style = GradualStyleBlock(512, 512, 16, 'max_pooling' in opts and opts.max_pooling) | |
elif i < self.middle_ind: | |
style = GradualStyleBlock(512, 512, 32, 'max_pooling' in opts and opts.max_pooling) | |
else: | |
style = GradualStyleBlock(512, 512, 64, 'max_pooling' in opts and opts.max_pooling) | |
self.styles.append(style) | |
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0) | |
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0) | |
# we concatenate pSp features in the middle layers and | |
# add a convolution layer to map the concatenated features to the first-layer input feature f of G. | |
self.featlayer = nn.Conv2d(768, 512, kernel_size=1, stride=1, padding=0) ##### modified | |
self.skiplayer = nn.Conv2d(768, 3, kernel_size=1, stride=1, padding=0) ##### modified | |
# skip connection | |
if 'use_skip' in opts and opts.use_skip: ##### modified | |
self.fusion = nn.ModuleList() | |
channels = [[256,512], [256,512], [256,512], [256,512], [128,512], [64,256], [64,128]] | |
# opts.skip_max_layer: how many layers are skipped to the decoder | |
for inc, outc in channels[:max(1, min(7, opts.skip_max_layer))]: # from 4 to 256 | |
self.fusion.append(FusionLayer(inc, outc, opts.use_skip_torgb, opts.use_att)) | |
def _upsample_add(self, x, y): | |
'''Upsample and add two feature maps. | |
Args: | |
x: (Variable) top feature map to be upsampled. | |
y: (Variable) lateral feature map. | |
Returns: | |
(Variable) added feature map. | |
Note in PyTorch, when input size is odd, the upsampled feature map | |
with `F.upsample(..., scale_factor=2, mode='nearest')` | |
maybe not equal to the lateral feature map size. | |
e.g. | |
original input size: [N,_,15,15] -> | |
conv2d feature map size: [N,_,8,8] -> | |
upsampled feature map size: [N,_,16,16] | |
So we choose bilinear upsample which supports arbitrary output sizes. | |
''' | |
_, _, H, W = y.size() | |
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y | |
# return_feat: return f | |
# return_full: return f and the skipped encoder features | |
# return [out, feats] | |
# out is the style latent code w+ | |
# feats[0] is f for the 1st conv layer, feats[1] is f for the 1st torgb layer | |
# feats[2-8] is the skipped encoder features | |
def forward(self, x, return_feat=False, return_full=False): ##### modified | |
if x.shape[1] != 3: | |
x = self.input_label_layer(x) | |
else: | |
x = self.input_layer(x) | |
c256 = x ##### modified | |
latents = [] | |
modulelist = list(self.body._modules.values()) | |
for i, l in enumerate(modulelist): | |
x = l(x) | |
if i == 2: ##### modified | |
c128 = x | |
elif i == 6: | |
c1 = x | |
elif i == 10: ##### modified | |
c21 = x ##### modified | |
elif i == 15: ##### modified | |
c22 = x ##### modified | |
elif i == 20: | |
c2 = x | |
elif i == 23: | |
c3 = x | |
for j in range(self.coarse_ind): | |
latents.append(self.styles[j](c3)) | |
p2 = self._upsample_add(c3, self.latlayer1(c2)) | |
for j in range(self.coarse_ind, self.middle_ind): | |
latents.append(self.styles[j](p2)) | |
p1 = self._upsample_add(p2, self.latlayer2(c1)) | |
for j in range(self.middle_ind, self.style_count): | |
latents.append(self.styles[j](p1)) | |
out = torch.stack(latents, dim=1) | |
if not return_feat: | |
return out | |
feats = [self.featlayer(torch.cat((c21, c22, c2), dim=1)), self.skiplayer(torch.cat((c21, c22, c2), dim=1))] | |
if return_full: ##### modified | |
feats += [c2, c2, c22, c21, c1, c128, c256] | |
return out, feats | |
# only compute the first-layer feature f | |
# E_F in the paper | |
def get_feat(self, x): ##### modified | |
# for sketch/mask-to-face translation | |
# use a trainable light-weight translation network T | |
if x.shape[1] != 3: | |
x = self.input_label_layer(x) | |
else: | |
x = self.input_layer(x) | |
latents = [] | |
modulelist = list(self.body._modules.values()) | |
for i, l in enumerate(modulelist): | |
x = l(x) | |
if i == 10: ##### modified | |
c21 = x ##### modified | |
elif i == 15: ##### modified | |
c22 = x ##### modified | |
elif i == 20: | |
c2 = x | |
break | |
return self.featlayer(torch.cat((c21, c22, c2), dim=1)) | |
class BackboneEncoderUsingLastLayerIntoW(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(BackboneEncoderUsingLastLayerIntoW, self).__init__() | |
print('Using BackboneEncoderUsingLastLayerIntoW') | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) | |
self.linear = EqualLinear(512, 512, lr_mul=1) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_pool(x) | |
x = x.view(-1, 512) | |
x = self.linear(x) | |
return x | |
class BackboneEncoderUsingLastLayerIntoWPlus(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__() | |
print('Using BackboneEncoderUsingLastLayerIntoWPlus') | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.n_styles = opts.n_styles | |
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
self.output_layer_2 = Sequential(BatchNorm2d(512), | |
torch.nn.AdaptiveAvgPool2d((7, 7)), | |
Flatten(), | |
Linear(512 * 7 * 7, 512)) | |
self.linear = EqualLinear(512, 512 * self.n_styles, lr_mul=1) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_layer_2(x) | |
x = self.linear(x) | |
x = x.view(-1, self.n_styles, 512) | |
return x | |