Spaces:
Running
on
T4
Running
on
T4
from __future__ import absolute_import | |
import sys | |
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
from torch.autograd import Variable | |
import numpy as np | |
from pdb import set_trace as st | |
from skimage import color | |
from IPython import embed | |
from models.stylegan2.lpips import pretrained_networks as pn | |
import models.stylegan2.lpips as util | |
def spatial_average(in_tens, keepdim=True): | |
return in_tens.mean([2,3],keepdim=keepdim) | |
def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W | |
in_H = in_tens.shape[2] | |
scale_factor = 1.*out_H/in_H | |
return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens) | |
# Learned perceptual metric | |
class PNetLin(nn.Module): | |
def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, version='0.1', lpips=True): | |
super(PNetLin, self).__init__() | |
self.pnet_type = pnet_type | |
self.pnet_tune = pnet_tune | |
self.pnet_rand = pnet_rand | |
self.spatial = spatial | |
self.lpips = lpips | |
self.version = version | |
self.scaling_layer = ScalingLayer() | |
if(self.pnet_type in ['vgg','vgg16']): | |
net_type = pn.vgg16 | |
self.chns = [64,128,256,512,512] | |
elif(self.pnet_type=='alex'): | |
net_type = pn.alexnet | |
self.chns = [64,192,384,256,256] | |
elif(self.pnet_type=='squeeze'): | |
net_type = pn.squeezenet | |
self.chns = [64,128,256,384,384,512,512] | |
self.L = len(self.chns) | |
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune) | |
if(lpips): | |
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) | |
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) | |
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) | |
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) | |
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) | |
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4] | |
if(self.pnet_type=='squeeze'): # 7 layers for squeezenet | |
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout) | |
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout) | |
self.lins+=[self.lin5,self.lin6] | |
def forward(self, in0, in1, retPerLayer=False): | |
# v0.0 - original release had a bug, where input was not scaled | |
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1) | |
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input) | |
feats0, feats1, diffs = {}, {}, {} | |
for kk in range(self.L): | |
feats0[kk], feats1[kk] = util.normalize_tensor(outs0[kk]), util.normalize_tensor(outs1[kk]) | |
diffs[kk] = (feats0[kk]-feats1[kk])**2 | |
if(self.lpips): | |
if(self.spatial): | |
res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)] | |
else: | |
res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)] | |
else: | |
if(self.spatial): | |
res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)] | |
else: | |
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)] | |
val = res[0] | |
for l in range(1,self.L): | |
val += res[l] | |
if(retPerLayer): | |
return (val, res) | |
else: | |
return val | |
class ScalingLayer(nn.Module): | |
def __init__(self): | |
super(ScalingLayer, self).__init__() | |
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None]) | |
self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None]) | |
def forward(self, inp): | |
return (inp - self.shift) / self.scale | |
class NetLinLayer(nn.Module): | |
''' A single linear layer which does a 1x1 conv ''' | |
def __init__(self, chn_in, chn_out=1, use_dropout=False): | |
super(NetLinLayer, self).__init__() | |
layers = [nn.Dropout(),] if(use_dropout) else [] | |
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),] | |
self.model = nn.Sequential(*layers) | |
class Dist2LogitLayer(nn.Module): | |
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) ''' | |
def __init__(self, chn_mid=32, use_sigmoid=True): | |
super(Dist2LogitLayer, self).__init__() | |
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),] | |
layers += [nn.LeakyReLU(0.2,True),] | |
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),] | |
layers += [nn.LeakyReLU(0.2,True),] | |
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),] | |
if(use_sigmoid): | |
layers += [nn.Sigmoid(),] | |
self.model = nn.Sequential(*layers) | |
def forward(self,d0,d1,eps=0.1): | |
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1)) | |
class BCERankingLoss(nn.Module): | |
def __init__(self, chn_mid=32): | |
super(BCERankingLoss, self).__init__() | |
self.net = Dist2LogitLayer(chn_mid=chn_mid) | |
# self.parameters = list(self.net.parameters()) | |
self.loss = torch.nn.BCELoss() | |
def forward(self, d0, d1, judge): | |
per = (judge+1.)/2. | |
self.logit = self.net.forward(d0,d1) | |
return self.loss(self.logit, per) | |
# L2, DSSIM metrics | |
class FakeNet(nn.Module): | |
def __init__(self, use_gpu=True, colorspace='Lab'): | |
super(FakeNet, self).__init__() | |
self.use_gpu = use_gpu | |
self.colorspace=colorspace | |
class L2(FakeNet): | |
def forward(self, in0, in1, retPerLayer=None): | |
assert(in0.size()[0]==1) # currently only supports batchSize 1 | |
if(self.colorspace=='RGB'): | |
(N,C,X,Y) = in0.size() | |
value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N) | |
return value | |
elif(self.colorspace=='Lab'): | |
value = util.l2(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), | |
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') | |
ret_var = Variable( torch.Tensor((value,) ) ) | |
if(self.use_gpu): | |
ret_var = ret_var.cuda() | |
return ret_var | |
class DSSIM(FakeNet): | |
def forward(self, in0, in1, retPerLayer=None): | |
assert(in0.size()[0]==1) # currently only supports batchSize 1 | |
if(self.colorspace=='RGB'): | |
value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float') | |
elif(self.colorspace=='Lab'): | |
value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), | |
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') | |
ret_var = Variable( torch.Tensor((value,) ) ) | |
if(self.use_gpu): | |
ret_var = ret_var.cuda() | |
return ret_var | |
def print_network(net): | |
num_params = 0 | |
for param in net.parameters(): | |
num_params += param.numel() | |
print('Network',net) | |
print('Total number of parameters: %d' % num_params) | |