Spaces:
Running
on
T4
Running
on
T4
from __future__ import annotations | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
import gradio as gr | |
def create_demo_sr(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Face Super Resolution') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type='filepath') | |
model_type = gr.Radio(label='Model Type', choices=['SR for 32x','SR for 4x-48x'], value='SR for 32x') | |
resize_scale = gr.Slider(label='Resize Scale', | |
minimum=4, | |
maximum=48, | |
value=32, | |
step=4) | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['pexels-daniel-xavier-1239291.jpg', 'SR for 32x', 32], | |
['ILip77SbmOE.png', 'SR for 32x', 32], | |
['ILip77SbmOE.png', 'SR for 4x-48x', 48], | |
], | |
inputs = [input_image, model_type, resize_scale], | |
) | |
with gr.Column(): | |
#lrinput = gr.Image(label='Low-resolution input',type='numpy', interactive=False) | |
#result = gr.Image(label='Output',type='numpy', interactive=False) | |
result = gr.Gallery(label='LR input and Output', | |
elem_id='gallery').style(grid=2, | |
height='auto') | |
inputs = [ | |
input_image, | |
resize_scale, | |
model_type, | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[result], | |
api_name='sr') | |
return demo | |
def create_demo_s2f(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Sketch-to-Face Translation') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type='filepath') | |
gr.Markdown("""Note: Input will be cropped if larger than 512x512.""") | |
seed = gr.Slider(label='Seed for appearance', | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True) | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['234_sketch.jpg', 1024]], | |
inputs = [input_image, seed], | |
) | |
with gr.Column(): | |
result = gr.Image(label='Output',type='numpy', interactive=False) | |
inputs = [ | |
input_image, seed | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[result], | |
api_name='s2f') | |
return demo | |
def create_demo_m2f(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Mask-to-Face Translation') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type='filepath') | |
input_type = gr.Radio(label='Input Type', choices=['color image','parsing mask'], value='color image') | |
seed = gr.Slider(label='Seed for appearance', | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True) | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['ILip77SbmOE.png', 'color image', 4], ['ILip77SbmOE_mask.png', 'parsing mask', 4]], | |
inputs = [input_image, input_type, seed], | |
) | |
with gr.Column(): | |
#vizmask = gr.Image(label='Visualized mask',type='numpy', interactive=False) | |
#result = gr.Image(label='Output',type='numpy', interactive=False) | |
result = gr.Gallery(label='Visualized mask and Output', | |
elem_id='gallery').style(grid=2, | |
height='auto') | |
inputs = [ | |
input_image, input_type, seed | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[result], | |
api_name='m2f') | |
return demo | |
def create_demo_editing(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Video Face Editing (for image input)') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type='filepath') | |
model_type = gr.Radio(label='Editing Type', choices=['reduce age','light hair color'], value='color image') | |
scale_factor = gr.Slider(label='editing degree (-2~2)', | |
minimum=-2, | |
maximum=2, | |
value=1, | |
step=0.1) | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['ILip77SbmOE.png', 'reduce age', -2], | |
['ILip77SbmOE.png', 'light hair color', 1]], | |
inputs = [input_image, model_type, scale_factor], | |
) | |
with gr.Column(): | |
result = gr.Image(label='Output',type='numpy', interactive=False) | |
inputs = [ | |
input_image, scale_factor, model_type | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[result], | |
api_name='editing') | |
return demo | |
def create_demo_toonify(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Video Face Toonification (for image input)') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type='filepath') | |
style_type = gr.Radio(label='Style Type', choices=['Pixar','Cartoon','Arcane'], value='Pixar') | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['ILip77SbmOE.png', 'Pixar'], ['ILip77SbmOE.png', 'Cartoon'], ['ILip77SbmOE.png', 'Arcane']], | |
inputs = [input_image, style_type], | |
) | |
with gr.Column(): | |
result = gr.Image(label='Output',type='numpy', interactive=False) | |
inputs = [ | |
input_image, style_type | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[result], | |
api_name='toonify') | |
return demo | |
def create_demo_vediting(process, max_frame_num = 4): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Video Face Editing (for video input)') | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(source='upload', mirror_webcam=False, type='filepath') | |
model_type = gr.Radio(label='Editing Type', choices=['reduce age','light hair color'], value='color image') | |
scale_factor = gr.Slider(label='editing degree (-2~2)', | |
minimum=-2, | |
maximum=2, | |
value=1, | |
step=0.1) | |
info = '' | |
if max_frame_num < 100: | |
info = '(full video editing is not allowed so as not to slow down the demo, \ | |
but you can duplicate the Space to modify the number limit to a large value)' | |
frame_num = gr.Slider(label='Number of frames to edit' + info, | |
minimum=1, | |
maximum=max_frame_num, | |
value=4, | |
step=1) | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['684.mp4', 'reduce age', 1.5, 2], | |
['684.mp4', 'light hair color', 0.7, 2]], | |
inputs = [input_video, model_type, scale_factor], | |
) | |
with gr.Column(): | |
viz_result = gr.Gallery(label='Several edited frames', elem_id='gallery').style(grid=2, height='auto') | |
result = gr.Video(label='Output', type='mp4', interactive=False) | |
inputs = [ | |
input_video, scale_factor, model_type, frame_num | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[viz_result, result], | |
api_name='vediting') | |
return demo | |
def create_demo_vtoonify(process, max_frame_num = 4): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## Video Face Toonification (for video input)') | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(source='upload', mirror_webcam=False, type='filepath') | |
style_type = gr.Radio(label='Style Type', choices=['Pixar','Cartoon','Arcane'], value='Pixar') | |
info = '' | |
if max_frame_num < 100: | |
info = '(full video toonify is not allowed so as not to slow down the demo, \ | |
but you can duplicate the Space to modify the number limit from 4 to a large value)' | |
frame_num = gr.Slider(label='Number of frames to toonify' + info, | |
minimum=1, | |
maximum=max_frame_num, | |
value=4, | |
step=1) | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['529_2.mp4', 'Arcane'], | |
['pexels-anthony-shkraba-production-8136210.mp4', 'Pixar'], | |
['684.mp4', 'Cartoon']], | |
inputs = [input_video, style_type], | |
) | |
with gr.Column(): | |
viz_result = gr.Gallery(label='Several toonified frames', elem_id='gallery').style(grid=2, height='auto') | |
result = gr.Video(label='Output', type='mp4', interactive=False) | |
inputs = [ | |
input_video, style_type, frame_num | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[viz_result, result], | |
api_name='vtoonify') | |
return demo | |
def create_demo_inversion(process, allow_optimization=False): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown('## StyleGANEX Inversion for Editing') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type='filepath') | |
info = '' | |
if allow_optimization == False: | |
info = ' (latent optimization is not allowed so as not to slow down the demo, \ | |
but you can duplicate the Space to modify the option or directly upload an optimized latent file. \ | |
The file can be computed by inversion.py from the github page or colab)' | |
optimize = gr.Radio(label='Whether optimize latent' + info, choices=['No optimization','Latent optimization'], | |
value='No optimization', interactive=allow_optimization) | |
input_latent = gr.File(label='Optimized latent code (optional)', file_types=[".pt"]) | |
editing_options = gr.Dropdown(['None', 'Style Mixing', | |
'Attribute Editing: smile', | |
'Attribute Editing: open_eye', | |
'Attribute Editing: open_mouth', | |
'Attribute Editing: pose', | |
'Attribute Editing: reduce_age', | |
'Attribute Editing: glasses', | |
'Attribute Editing: light_hair_color', | |
'Attribute Editing: slender', | |
'Domain Transfer: disney_princess', | |
'Domain Transfer: vintage_comics', | |
'Domain Transfer: pixar', | |
'Domain Transfer: edvard_munch', | |
'Domain Transfer: modigliani', | |
], | |
label="editing options (based on StyleGAN-NADA, InterFaceGAN, LowRankGAN)", | |
value='None') | |
scale_factor = gr.Slider(label='editing degree (-2~2) for Attribute Editing', | |
minimum=-2, | |
maximum=2, | |
value=2, | |
step=0.1) | |
seed = gr.Slider(label='Appearance Seed for Style Mixing', | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True) | |
#input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
run_button = gr.Button(label='Run') | |
gr.Examples( | |
examples =[['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Domain Transfer: vintage_comics'], | |
['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Attribute Editing: smile'], | |
['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Style Mixing'], | |
], | |
inputs = [input_image, input_latent, editing_options], | |
) | |
with gr.Column(): | |
result = gr.Image(label='Inversion output',type='numpy', interactive=False) | |
editing_result = gr.Image(label='Editing output',type='numpy', interactive=False) | |
inputs = [ | |
input_image, optimize, input_latent, editing_options, scale_factor, seed | |
] | |
run_button.click(fn=process, | |
inputs=inputs, | |
outputs=[result, editing_result], | |
api_name='inversion') | |
return demo |