Spaces:
Running
on
T4
Running
on
T4
from torchvision import transforms | |
from torchvision.utils import save_image | |
from torch.utils.serialization import load_lua | |
import os | |
import cv2 | |
import numpy as np | |
""" | |
NOTE!: Must have torch==0.4.1 and torchvision==0.2.1 | |
The sketch simplification model (sketch_gan.t7) from Simo Serra et al. can be downloaded from their official implementation: | |
https://github.com/bobbens/sketch_simplification | |
""" | |
def sobel(img): | |
opImgx = cv2.Sobel(img, cv2.CV_8U, 0, 1, ksize=3) | |
opImgy = cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize=3) | |
return cv2.bitwise_or(opImgx, opImgy) | |
def sketch(frame): | |
frame = cv2.GaussianBlur(frame, (3, 3), 0) | |
invImg = 255 - frame | |
edgImg0 = sobel(frame) | |
edgImg1 = sobel(invImg) | |
edgImg = cv2.addWeighted(edgImg0, 0.75, edgImg1, 0.75, 0) | |
opImg = 255 - edgImg | |
return opImg | |
def get_sketch_image(image_path): | |
original = cv2.imread(image_path) | |
original = cv2.cvtColor(original, cv2.COLOR_BGR2GRAY) | |
sketch_image = sketch(original) | |
return sketch_image[:, :, np.newaxis] | |
use_cuda = True | |
cache = load_lua("/path/to/sketch_gan.t7") | |
model = cache.model | |
immean = cache.mean | |
imstd = cache.std | |
model.evaluate() | |
data_path = "/path/to/data/imgs" | |
images = [os.path.join(data_path, f) for f in os.listdir(data_path)] | |
output_dir = "/path/to/data/edges" | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
for idx, image_path in enumerate(images): | |
if idx % 50 == 0: | |
print("{} out of {}".format(idx, len(images))) | |
data = get_sketch_image(image_path) | |
data = ((transforms.ToTensor()(data) - immean) / imstd).unsqueeze(0) | |
if use_cuda: | |
pred = model.cuda().forward(data.cuda()).float() | |
else: | |
pred = model.forward(data) | |
save_image(pred[0], os.path.join(output_dir, "{}_edges.jpg".format(image_path.split("/")[-1].split('.')[0]))) | |