Spaces:
Running
on
T4
Running
on
T4
""" | |
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
author: lzhbrian (https://lzhbrian.me) | |
date: 2020.1.5 | |
note: code is heavily borrowed from | |
https://github.com/NVlabs/ffhq-dataset | |
http://dlib.net/face_landmark_detection.py.html | |
requirements: | |
apt install cmake | |
conda install Pillow numpy scipy | |
pip install dlib | |
# download face landmark model from: | |
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
""" | |
from argparse import ArgumentParser | |
import time | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import os | |
import scipy | |
import scipy.ndimage | |
import dlib | |
import multiprocessing as mp | |
import math | |
from configs.paths_config import model_paths | |
SHAPE_PREDICTOR_PATH = model_paths["shape_predictor"] | |
def get_landmark(filepath, predictor): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
detector = dlib.get_frontal_face_detector() | |
if type(filepath) == str: | |
img = dlib.load_rgb_image(filepath) | |
else: | |
img = filepath | |
dets = detector(img, 1) | |
if len(dets) == 0: | |
print('Error: no face detected! If you are sure there are faces in your input, you may rerun the code or change the image several times until the face is detected. Sometimes the detector is unstable.') | |
return None | |
shape = None | |
for k, d in enumerate(dets): | |
shape = predictor(img, d) | |
t = list(shape.parts()) | |
a = [] | |
for tt in t: | |
a.append([tt.x, tt.y]) | |
lm = np.array(a) | |
return lm | |
def align_face(filepath, predictor): | |
""" | |
:param filepath: str | |
:return: PIL Image | |
""" | |
lm = get_landmark(filepath, predictor) | |
if lm is None: | |
return None | |
lm_chin = lm[0: 17] # left-right | |
lm_eyebrow_left = lm[17: 22] # left-right | |
lm_eyebrow_right = lm[22: 27] # left-right | |
lm_nose = lm[27: 31] # top-down | |
lm_nostrils = lm[31: 36] # top-down | |
lm_eye_left = lm[36: 42] # left-clockwise | |
lm_eye_right = lm[42: 48] # left-clockwise | |
lm_mouth_outer = lm[48: 60] # left-clockwise | |
lm_mouth_inner = lm[60: 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
qsize = np.hypot(*x) * 2 | |
# read image | |
if type(filepath) == str: | |
img = PIL.Image.open(filepath) | |
else: | |
img = PIL.Image.fromarray(filepath) | |
output_size = 256 | |
transform_size = 256 | |
enable_padding = True | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), | |
max(pad[3] - img.size[1] + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w, _ = img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), | |
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) | |
blur = qsize * 0.02 | |
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
quad += pad[:2] | |
# Transform. | |
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
if output_size < transform_size: | |
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
# Save aligned image. | |
return img | |
def chunks(lst, n): | |
"""Yield successive n-sized chunks from lst.""" | |
for i in range(0, len(lst), n): | |
yield lst[i:i + n] | |
def extract_on_paths(file_paths): | |
predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH) | |
pid = mp.current_process().name | |
print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths))) | |
tot_count = len(file_paths) | |
count = 0 | |
for file_path, res_path in file_paths: | |
count += 1 | |
if count % 100 == 0: | |
print('{} done with {}/{}'.format(pid, count, tot_count)) | |
try: | |
res = align_face(file_path, predictor) | |
res = res.convert('RGB') | |
os.makedirs(os.path.dirname(res_path), exist_ok=True) | |
res.save(res_path) | |
except Exception: | |
continue | |
print('\tDone!') | |
def parse_args(): | |
parser = ArgumentParser(add_help=False) | |
parser.add_argument('--num_threads', type=int, default=1) | |
parser.add_argument('--root_path', type=str, default='') | |
args = parser.parse_args() | |
return args | |
def run(args): | |
root_path = args.root_path | |
out_crops_path = root_path + '_crops' | |
if not os.path.exists(out_crops_path): | |
os.makedirs(out_crops_path, exist_ok=True) | |
file_paths = [] | |
for root, dirs, files in os.walk(root_path): | |
for file in files: | |
file_path = os.path.join(root, file) | |
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path)) | |
res_path = '{}.jpg'.format(os.path.splitext(fname)[0]) | |
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path): | |
continue | |
file_paths.append((file_path, res_path)) | |
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads)))) | |
print(len(file_chunks)) | |
pool = mp.Pool(args.num_threads) | |
print('Running on {} paths\nHere we goooo'.format(len(file_paths))) | |
tic = time.time() | |
pool.map(extract_on_paths, file_chunks) | |
toc = time.time() | |
print('Mischief managed in {}s'.format(toc - tic)) | |
if __name__ == '__main__': | |
args = parse_args() | |
run(args) | |