Spaces:
Sleeping
Sleeping
PKUWilliamYang
commited on
Commit
·
01ad5b5
1
Parent(s):
ac1883f
Upload 5 files
Browse files- configs/__init__.py +0 -0
- configs/data_configs.py +48 -0
- configs/dataset_config.yml +60 -0
- configs/paths_config.py +25 -0
- configs/transforms_config.py +242 -0
configs/__init__.py
ADDED
File without changes
|
configs/data_configs.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from configs import transforms_config
|
2 |
+
from configs.paths_config import dataset_paths
|
3 |
+
|
4 |
+
|
5 |
+
DATASETS = {
|
6 |
+
'ffhq_encode': {
|
7 |
+
'transforms': transforms_config.EncodeTransforms,
|
8 |
+
'train_source_root': dataset_paths['ffhq'],
|
9 |
+
'train_target_root': dataset_paths['ffhq'],
|
10 |
+
'test_source_root': dataset_paths['ffhq_test'],
|
11 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
12 |
+
},
|
13 |
+
'ffhq_sketch_to_face': {
|
14 |
+
'transforms': transforms_config.SketchToImageTransforms,
|
15 |
+
'train_source_root': dataset_paths['ffhq_train_sketch'],
|
16 |
+
'train_target_root': dataset_paths['ffhq'],
|
17 |
+
'test_source_root': dataset_paths['ffhq_test_sketch'],
|
18 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
19 |
+
},
|
20 |
+
'ffhq_seg_to_face': {
|
21 |
+
'transforms': transforms_config.SegToImageTransforms,
|
22 |
+
'train_source_root': dataset_paths['ffhq_train_segmentation'],
|
23 |
+
'train_target_root': dataset_paths['ffhq'],
|
24 |
+
'test_source_root': dataset_paths['ffhq_test_segmentation'],
|
25 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
26 |
+
},
|
27 |
+
'ffhq_super_resolution': {
|
28 |
+
'transforms': transforms_config.SuperResTransforms,
|
29 |
+
'train_source_root': dataset_paths['ffhq'],
|
30 |
+
'train_target_root': dataset_paths['ffhq1280'],
|
31 |
+
'test_source_root': dataset_paths['ffhq_test'],
|
32 |
+
'test_target_root': dataset_paths['ffhq1280_test'],
|
33 |
+
},
|
34 |
+
'toonify': {
|
35 |
+
'transforms': transforms_config.ToonifyTransforms,
|
36 |
+
'train_source_root': dataset_paths['toonify_in'],
|
37 |
+
'train_target_root': dataset_paths['toonify_out'],
|
38 |
+
'test_source_root': dataset_paths['toonify_test_in'],
|
39 |
+
'test_target_root': dataset_paths['toonify_test_out'],
|
40 |
+
},
|
41 |
+
'ffhq_edit': {
|
42 |
+
'transforms': transforms_config.EditingTransforms,
|
43 |
+
'train_source_root': dataset_paths['ffhq'],
|
44 |
+
'train_target_root': dataset_paths['ffhq'],
|
45 |
+
'test_source_root': dataset_paths['ffhq_test'],
|
46 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
47 |
+
},
|
48 |
+
}
|
configs/dataset_config.yml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset and data loader settings
|
2 |
+
datasets:
|
3 |
+
train:
|
4 |
+
name: FFHQ
|
5 |
+
type: FFHQDegradationDataset
|
6 |
+
# dataroot_gt: datasets/ffhq/ffhq_512.lmdb
|
7 |
+
dataroot_gt: ../../../../share/shuaiyang/ffhq/realign1280x1280test/
|
8 |
+
io_backend:
|
9 |
+
# type: lmdb
|
10 |
+
type: disk
|
11 |
+
|
12 |
+
use_hflip: true
|
13 |
+
mean: [0.5, 0.5, 0.5]
|
14 |
+
std: [0.5, 0.5, 0.5]
|
15 |
+
out_size: 1280
|
16 |
+
scale: 4
|
17 |
+
|
18 |
+
blur_kernel_size: 41
|
19 |
+
kernel_list: ['iso', 'aniso']
|
20 |
+
kernel_prob: [0.5, 0.5]
|
21 |
+
blur_sigma: [0.1, 10]
|
22 |
+
downsample_range: [4, 40]
|
23 |
+
noise_range: [0, 20]
|
24 |
+
jpeg_range: [60, 100]
|
25 |
+
|
26 |
+
# color jitter and gray
|
27 |
+
#color_jitter_prob: 0.3
|
28 |
+
#color_jitter_shift: 20
|
29 |
+
#color_jitter_pt_prob: 0.3
|
30 |
+
#gray_prob: 0.01
|
31 |
+
|
32 |
+
# If you do not want colorization, please set
|
33 |
+
color_jitter_prob: ~
|
34 |
+
color_jitter_pt_prob: ~
|
35 |
+
gray_prob: 0.01
|
36 |
+
gt_gray: True
|
37 |
+
|
38 |
+
crop_components: true
|
39 |
+
component_path: ./pretrained_models/FFHQ_eye_mouth_landmarks_512.pth
|
40 |
+
eye_enlarge_ratio: 1.4
|
41 |
+
|
42 |
+
# data loader
|
43 |
+
use_shuffle: true
|
44 |
+
num_worker_per_gpu: 6
|
45 |
+
batch_size_per_gpu: 4
|
46 |
+
dataset_enlarge_ratio: 1
|
47 |
+
prefetch_mode: ~
|
48 |
+
|
49 |
+
val:
|
50 |
+
# Please modify accordingly to use your own validation
|
51 |
+
# Or comment the val block if do not need validation during training
|
52 |
+
name: validation
|
53 |
+
type: PairedImageDataset
|
54 |
+
dataroot_lq: datasets/faces/validation/input
|
55 |
+
dataroot_gt: datasets/faces/validation/reference
|
56 |
+
io_backend:
|
57 |
+
type: disk
|
58 |
+
mean: [0.5, 0.5, 0.5]
|
59 |
+
std: [0.5, 0.5, 0.5]
|
60 |
+
scale: 1
|
configs/paths_config.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_paths = {
|
2 |
+
'ffhq': 'data/train/ffhq/realign320x320/',
|
3 |
+
'ffhq_test': 'data/train/ffhq/realign320x320test/',
|
4 |
+
'ffhq1280': 'data/train/ffhq/realign1280x1280/',
|
5 |
+
'ffhq1280_test': 'data/train/ffhq/realign1280x1280test/',
|
6 |
+
'ffhq_train_sketch': 'data/train/ffhq/realign640x640sketch/',
|
7 |
+
'ffhq_test_sketch': 'data/train/ffhq/realign640x640sketchtest/',
|
8 |
+
'ffhq_train_segmentation': 'data/train/ffhq/realign320x320mask/',
|
9 |
+
'ffhq_test_segmentation': 'data/train/ffhq/realign320x320masktest/',
|
10 |
+
'toonify_in': 'data/train/pixar/trainA/',
|
11 |
+
'toonify_out': 'data/train/pixar/trainB/',
|
12 |
+
'toonify_test_in': 'data/train/pixar/testA/',
|
13 |
+
'toonify_test_out': 'data/train/testB/',
|
14 |
+
}
|
15 |
+
|
16 |
+
model_paths = {
|
17 |
+
'stylegan_ffhq': 'pretrained_models/stylegan2-ffhq-config-f.pt',
|
18 |
+
'ir_se50': 'pretrained_models/model_ir_se50.pth',
|
19 |
+
'circular_face': 'pretrained_models/CurricularFace_Backbone.pth',
|
20 |
+
'mtcnn_pnet': 'pretrained_models/mtcnn/pnet.npy',
|
21 |
+
'mtcnn_rnet': 'pretrained_models/mtcnn/rnet.npy',
|
22 |
+
'mtcnn_onet': 'pretrained_models/mtcnn/onet.npy',
|
23 |
+
'shape_predictor': 'shape_predictor_68_face_landmarks.dat',
|
24 |
+
'moco': 'pretrained_models/moco_v2_800ep_pretrain.pth.tar'
|
25 |
+
}
|
configs/transforms_config.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from datasets import augmentations
|
4 |
+
|
5 |
+
|
6 |
+
class TransformsConfig(object):
|
7 |
+
|
8 |
+
def __init__(self, opts):
|
9 |
+
self.opts = opts
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def get_transforms(self):
|
13 |
+
pass
|
14 |
+
|
15 |
+
|
16 |
+
class EncodeTransforms(TransformsConfig):
|
17 |
+
|
18 |
+
def __init__(self, opts):
|
19 |
+
super(EncodeTransforms, self).__init__(opts)
|
20 |
+
|
21 |
+
def get_transforms(self):
|
22 |
+
transforms_dict = {
|
23 |
+
'transform_gt_train': transforms.Compose([
|
24 |
+
transforms.Resize((320, 320)),
|
25 |
+
transforms.RandomHorizontalFlip(0.5),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
28 |
+
'transform_source': None,
|
29 |
+
'transform_test': transforms.Compose([
|
30 |
+
transforms.Resize((320, 320)),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
33 |
+
'transform_inference': transforms.Compose([
|
34 |
+
transforms.Resize((320, 320)),
|
35 |
+
transforms.ToTensor(),
|
36 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
37 |
+
}
|
38 |
+
return transforms_dict
|
39 |
+
|
40 |
+
|
41 |
+
class FrontalizationTransforms(TransformsConfig):
|
42 |
+
|
43 |
+
def __init__(self, opts):
|
44 |
+
super(FrontalizationTransforms, self).__init__(opts)
|
45 |
+
|
46 |
+
def get_transforms(self):
|
47 |
+
transforms_dict = {
|
48 |
+
'transform_gt_train': transforms.Compose([
|
49 |
+
transforms.Resize((256, 256)),
|
50 |
+
transforms.RandomHorizontalFlip(0.5),
|
51 |
+
transforms.ToTensor(),
|
52 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
53 |
+
'transform_source': transforms.Compose([
|
54 |
+
transforms.Resize((256, 256)),
|
55 |
+
transforms.RandomHorizontalFlip(0.5),
|
56 |
+
transforms.ToTensor(),
|
57 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
58 |
+
'transform_test': transforms.Compose([
|
59 |
+
transforms.Resize((256, 256)),
|
60 |
+
transforms.ToTensor(),
|
61 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
62 |
+
'transform_inference': transforms.Compose([
|
63 |
+
transforms.Resize((256, 256)),
|
64 |
+
transforms.ToTensor(),
|
65 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
66 |
+
}
|
67 |
+
return transforms_dict
|
68 |
+
|
69 |
+
|
70 |
+
class SketchToImageTransforms(TransformsConfig):
|
71 |
+
|
72 |
+
def __init__(self, opts):
|
73 |
+
super(SketchToImageTransforms, self).__init__(opts)
|
74 |
+
|
75 |
+
def get_transforms(self):
|
76 |
+
transforms_dict = {
|
77 |
+
'transform_gt_train': transforms.Compose([
|
78 |
+
transforms.Resize((320, 320)),
|
79 |
+
transforms.ToTensor(),
|
80 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
81 |
+
'transform_source': transforms.Compose([
|
82 |
+
transforms.Resize((320, 320)),
|
83 |
+
transforms.ToTensor()]),
|
84 |
+
'transform_test': transforms.Compose([
|
85 |
+
transforms.Resize((320, 320)),
|
86 |
+
transforms.ToTensor(),
|
87 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
88 |
+
'transform_inference': transforms.Compose([
|
89 |
+
transforms.Resize((320, 320)),
|
90 |
+
transforms.ToTensor()]),
|
91 |
+
}
|
92 |
+
return transforms_dict
|
93 |
+
|
94 |
+
|
95 |
+
class SegToImageTransforms(TransformsConfig):
|
96 |
+
|
97 |
+
def __init__(self, opts):
|
98 |
+
super(SegToImageTransforms, self).__init__(opts)
|
99 |
+
|
100 |
+
def get_transforms(self):
|
101 |
+
transforms_dict = {
|
102 |
+
'transform_gt_train': transforms.Compose([
|
103 |
+
transforms.Resize((320, 320)),
|
104 |
+
transforms.ToTensor(),
|
105 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
106 |
+
'transform_source': transforms.Compose([
|
107 |
+
transforms.Resize((320, 320)),
|
108 |
+
augmentations.ToOneHot(self.opts.label_nc),
|
109 |
+
transforms.ToTensor()]),
|
110 |
+
'transform_test': transforms.Compose([
|
111 |
+
transforms.Resize((320, 320)),
|
112 |
+
transforms.ToTensor(),
|
113 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
114 |
+
'transform_inference': transforms.Compose([
|
115 |
+
transforms.Resize((320, 320)),
|
116 |
+
augmentations.ToOneHot(self.opts.label_nc),
|
117 |
+
transforms.ToTensor()])
|
118 |
+
}
|
119 |
+
return transforms_dict
|
120 |
+
|
121 |
+
|
122 |
+
class SuperResTransforms(TransformsConfig):
|
123 |
+
|
124 |
+
def __init__(self, opts):
|
125 |
+
super(SuperResTransforms, self).__init__(opts)
|
126 |
+
|
127 |
+
def get_transforms(self):
|
128 |
+
if self.opts.resize_factors is None:
|
129 |
+
self.opts.resize_factors = '1,2,4,8,16,32'
|
130 |
+
factors = [int(f) for f in self.opts.resize_factors.split(",")]
|
131 |
+
print("Performing down-sampling with factors: {}".format(factors))
|
132 |
+
transforms_dict = {
|
133 |
+
'transform_gt_train': transforms.Compose([
|
134 |
+
transforms.Resize((1280, 1280)),
|
135 |
+
transforms.ToTensor(),
|
136 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
137 |
+
'transform_source': transforms.Compose([
|
138 |
+
transforms.Resize((320, 320)),
|
139 |
+
augmentations.BilinearResize(factors=factors),
|
140 |
+
transforms.Resize((320, 320)),
|
141 |
+
transforms.ToTensor(),
|
142 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
143 |
+
'transform_test': transforms.Compose([
|
144 |
+
transforms.Resize((1280, 1280)),
|
145 |
+
transforms.ToTensor(),
|
146 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
147 |
+
'transform_inference': transforms.Compose([
|
148 |
+
transforms.Resize((320, 320)),
|
149 |
+
augmentations.BilinearResize(factors=factors),
|
150 |
+
transforms.Resize((320, 320)),
|
151 |
+
transforms.ToTensor(),
|
152 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
153 |
+
}
|
154 |
+
return transforms_dict
|
155 |
+
|
156 |
+
|
157 |
+
class SuperResTransforms_320(TransformsConfig):
|
158 |
+
|
159 |
+
def __init__(self, opts):
|
160 |
+
super(SuperResTransforms_320, self).__init__(opts)
|
161 |
+
|
162 |
+
def get_transforms(self):
|
163 |
+
if self.opts.resize_factors is None:
|
164 |
+
self.opts.resize_factors = '1,2,4,8,16,32'
|
165 |
+
factors = [int(f) for f in self.opts.resize_factors.split(",")]
|
166 |
+
print("Performing down-sampling with factors: {}".format(factors))
|
167 |
+
transforms_dict = {
|
168 |
+
'transform_gt_train': transforms.Compose([
|
169 |
+
transforms.Resize((320, 320)),
|
170 |
+
transforms.ToTensor(),
|
171 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
172 |
+
'transform_source': transforms.Compose([
|
173 |
+
transforms.Resize((320, 320)),
|
174 |
+
augmentations.BilinearResize(factors=factors),
|
175 |
+
transforms.Resize((320, 320)),
|
176 |
+
transforms.ToTensor(),
|
177 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
178 |
+
'transform_test': transforms.Compose([
|
179 |
+
transforms.Resize((320, 320)),
|
180 |
+
transforms.ToTensor(),
|
181 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
182 |
+
'transform_inference': transforms.Compose([
|
183 |
+
transforms.Resize((320, 320)),
|
184 |
+
augmentations.BilinearResize(factors=factors),
|
185 |
+
transforms.Resize((320, 320)),
|
186 |
+
transforms.ToTensor(),
|
187 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
188 |
+
}
|
189 |
+
return transforms_dict
|
190 |
+
|
191 |
+
|
192 |
+
class ToonifyTransforms(TransformsConfig):
|
193 |
+
|
194 |
+
def __init__(self, opts):
|
195 |
+
super(ToonifyTransforms, self).__init__(opts)
|
196 |
+
|
197 |
+
def get_transforms(self):
|
198 |
+
transforms_dict = {
|
199 |
+
'transform_gt_train': transforms.Compose([
|
200 |
+
transforms.Resize((1024, 1024)),
|
201 |
+
transforms.ToTensor(),
|
202 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
203 |
+
'transform_source': transforms.Compose([
|
204 |
+
transforms.Resize((256, 256)),
|
205 |
+
transforms.ToTensor(),
|
206 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
207 |
+
'transform_test': transforms.Compose([
|
208 |
+
transforms.Resize((1024, 1024)),
|
209 |
+
transforms.ToTensor(),
|
210 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
211 |
+
'transform_inference': transforms.Compose([
|
212 |
+
transforms.Resize((256, 256)),
|
213 |
+
transforms.ToTensor(),
|
214 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
215 |
+
}
|
216 |
+
return transforms_dict
|
217 |
+
|
218 |
+
class EditingTransforms(TransformsConfig):
|
219 |
+
|
220 |
+
def __init__(self, opts):
|
221 |
+
super(EditingTransforms, self).__init__(opts)
|
222 |
+
|
223 |
+
def get_transforms(self):
|
224 |
+
transforms_dict = {
|
225 |
+
'transform_gt_train': transforms.Compose([
|
226 |
+
transforms.Resize((1280, 1280)),
|
227 |
+
transforms.ToTensor(),
|
228 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
229 |
+
'transform_source': transforms.Compose([
|
230 |
+
transforms.Resize((320, 320)),
|
231 |
+
transforms.ToTensor(),
|
232 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
233 |
+
'transform_test': transforms.Compose([
|
234 |
+
transforms.Resize((1280, 1280)),
|
235 |
+
transforms.ToTensor(),
|
236 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
237 |
+
'transform_inference': transforms.Compose([
|
238 |
+
transforms.Resize((320, 320)),
|
239 |
+
transforms.ToTensor(),
|
240 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
241 |
+
}
|
242 |
+
return transforms_dict
|