Spaces:
Sleeping
Sleeping
File size: 3,271 Bytes
15d22f4 0128016 15d22f4 0128016 15d22f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import fal_client
import pandas as pd
from prompt_gen import prompt_gen
import requests
import os
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx')
na_prompt_file = pd.read_excel('汉服-男词库.xlsx')
nv_prompt = nv_prompt_file.to_string(index=False)
na_prompt = na_prompt_file.to_string(index=False)
def cloth_gen(advice, gender):
print(f"cloth_gen_gender{gender}")
# lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
if gender == "男":
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NA.safetensors"
else:
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
prompt = prompt_gen(advice, gender)
start_index = prompt.find("prompt" or "Prompt")
intro_index = prompt.find("服饰风格介绍")
cloth_intro = ""
promptGen = ""
if start_index != -1:
start_index += len("prompt\n")
end_index = prompt.find("promptEnd")
if end_index != -1:
extracted_content = prompt[start_index:end_index]
promptGen = extracted_content
print(extracted_content)
else:
print("No 'promptEnd' found after 'prompt'.")
else:
print("No 'prompt' found in the text.")
if intro_index != -1:
intro_index += len("服饰风格介绍\n")
cloth_intro = ("汉服,是汉民族的传统服饰。又称衣冠、衣裳、汉装。汉服是中国“衣冠上国”“礼仪之邦”“锦绣中华”的体现,承载了中国的染织绣等杰出"
"工艺和美学,传承了30多项中国非物质文化遗产以及受保护的中国工艺美术。\n") + prompt[intro_index:]
print(cloth_intro)
else:
print("No '服饰风格介绍' found.")
handler = fal_client.submit(
"fal-ai/fast-sdxl",
arguments={
"prompt": promptGen,
"negative_prompt": "human, people, person, man, woman, child, model, face, head, eyes, hands, arms, legs, "
"feet, hair, portrait, worst quality, low quality, normal quality, lowres, signature, "
"watermark, jpeg artifacts, logo, monochrome, grayscale, ugly",
"image_size": "portrait_4_3",
"num_inference_steps": 28,
"guidance_scale": 7.5,
"num_images": 6,
"loras": [{"path": lora_path, "scale": 0.7}],
"embeddings": [],
"safety_checker_version": "v1",
"format": "jpeg"
},
)
request_id = handler.request_id
result = fal_client.result("fal-ai/fast-sdxl", request_id)
cloth_image = []
save_directory = "downloads"
image_index = 1
for image in result['images']:
response = requests.get(image['url'])
if response.status_code == 200:
filename = os.path.join(save_directory, f"gen_cloth_{image_index}.jpeg")
cloth_image.append(filename)
with open(filename, 'wb') as f:
f.write(response.content)
image_index += 1
else:
print(f"Failed to download image from {image['url']}")
return cloth_image, cloth_image[0], cloth_intro
|