Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- prompt_gen.py +39 -39
- sugg_gene.py +34 -34
prompt_gen.py
CHANGED
|
@@ -1,39 +1,39 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import os
|
| 3 |
-
from openai import OpenAI
|
| 4 |
-
|
| 5 |
-
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx')
|
| 6 |
-
na_prompt_file = pd.read_excel('汉服-男词库.xlsx')
|
| 7 |
-
nv_prompt = nv_prompt_file.to_string(index=False)
|
| 8 |
-
na_prompt = na_prompt_file.to_string(index=False)
|
| 9 |
-
|
| 10 |
-
os.environ["OPENAI_API_KEY"] = "sk-vtyR3fdgk08jmJ5e3eF6F5Ef663c4a3bAd0166C3549a1a8e"
|
| 11 |
-
os.environ["OPENAI_BASE_URL"] = "http://15.204.101.64:4000/v1"
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def prompt_gen(advise, gender):
|
| 15 |
-
prompt = nv_prompt
|
| 16 |
-
trigger = "a Hanfu"
|
| 17 |
-
if gender == "男":
|
| 18 |
-
prompt = na_prompt
|
| 19 |
-
trigger = "A Hanfu"
|
| 20 |
-
elif gender == "女":
|
| 21 |
-
prompt = nv_prompt
|
| 22 |
-
trigger = "a Hanfu"
|
| 23 |
-
|
| 24 |
-
client = OpenAI()
|
| 25 |
-
completion = client.chat.completions.create(
|
| 26 |
-
model="gpt-4o",
|
| 27 |
-
messages=[
|
| 28 |
-
{"role": "system",
|
| 29 |
-
"content": "You are a helpful assistant.",},
|
| 30 |
-
{"role": "user",
|
| 31 |
-
"content": advise + "根据上述建议,从以下prompt库中的触发词、种类、上衣、裙子、领子、袖子、袖口、腰饰、裙子详述中每个挑选一个词,分点描述,触发"
|
| 32 |
-
"词固定选择为" + trigger + ",然后在最下面列出所有Prompt,以‘Begin’为开头后换行, 输出所有英文描述,用逗"
|
| 33 |
-
"号间隔,再加上‘, white background’, 再然后换行后以'End'结尾。prompt库如下:" + prompt,
|
| 34 |
-
}
|
| 35 |
-
]
|
| 36 |
-
|
| 37 |
-
)
|
| 38 |
-
print(completion.choices[0].message.content)
|
| 39 |
-
return completion.choices[0].message.content
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import os
|
| 3 |
+
from openai import OpenAI
|
| 4 |
+
|
| 5 |
+
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx')
|
| 6 |
+
na_prompt_file = pd.read_excel('汉服-男词库.xlsx')
|
| 7 |
+
nv_prompt = nv_prompt_file.to_string(index=False)
|
| 8 |
+
na_prompt = na_prompt_file.to_string(index=False)
|
| 9 |
+
|
| 10 |
+
# os.environ["OPENAI_API_KEY"] = "sk-vtyR3fdgk08jmJ5e3eF6F5Ef663c4a3bAd0166C3549a1a8e"
|
| 11 |
+
# os.environ["OPENAI_BASE_URL"] = "http://15.204.101.64:4000/v1"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def prompt_gen(advise, gender):
|
| 15 |
+
prompt = nv_prompt
|
| 16 |
+
trigger = "a Hanfu"
|
| 17 |
+
if gender == "男":
|
| 18 |
+
prompt = na_prompt
|
| 19 |
+
trigger = "A Hanfu"
|
| 20 |
+
elif gender == "女":
|
| 21 |
+
prompt = nv_prompt
|
| 22 |
+
trigger = "a Hanfu"
|
| 23 |
+
|
| 24 |
+
client = OpenAI()
|
| 25 |
+
completion = client.chat.completions.create(
|
| 26 |
+
model="gpt-4o",
|
| 27 |
+
messages=[
|
| 28 |
+
{"role": "system",
|
| 29 |
+
"content": "You are a helpful assistant.",},
|
| 30 |
+
{"role": "user",
|
| 31 |
+
"content": advise + "根据上述建议,从以下prompt库中的触发词、种类、上衣、裙子、领子、袖子、袖口、腰饰、裙子详述中每个挑选一个词,分点描述,触发"
|
| 32 |
+
"词固定选择为" + trigger + ",然后在最下面列出所有Prompt,以‘Begin’为开头后换行, 输出所有英文描述,用逗"
|
| 33 |
+
"号间隔,再加上‘, white background’, 再然后换行后以'End'结尾。prompt库如下:" + prompt,
|
| 34 |
+
}
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
)
|
| 38 |
+
print(completion.choices[0].message.content)
|
| 39 |
+
return completion.choices[0].message.content
|
sugg_gene.py
CHANGED
|
@@ -1,34 +1,34 @@
|
|
| 1 |
-
from suggestion import generate_outfit_advice
|
| 2 |
-
from clothGen import pro_gen
|
| 3 |
-
import os
|
| 4 |
-
from openai import OpenAI
|
| 5 |
-
|
| 6 |
-
os.environ["OPENAI_API_KEY"] = "sk-vtyR3fdgk08jmJ5e3eF6F5Ef663c4a3bAd0166C3549a1a8e"
|
| 7 |
-
os.environ["OPENAI_BASE_URL"] = "http://15.204.101.64:4000/v1"
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def suggest_gene(user_name, height, weight, waist, chest, hip, shoulder_width, leg_length, arm_length, gender,
|
| 11 |
-
body_type, skin_color, style_preference, lifestyle_requirements, special_requirements,
|
| 12 |
-
feedback, user_pic):
|
| 13 |
-
analyse = generate_outfit_advice(user_name, height, weight, waist, chest, hip, shoulder_width, leg_length,
|
| 14 |
-
arm_length, gender, body_type, skin_color, style_preference,
|
| 15 |
-
lifestyle_requirements, special_requirements, feedback, user_pic)
|
| 16 |
-
prompts = ""
|
| 17 |
-
for i in range(1, 4):
|
| 18 |
-
prompts += pro_gen(analyse, gender, i)
|
| 19 |
-
|
| 20 |
-
client = OpenAI()
|
| 21 |
-
completion = client.chat.completions.create(
|
| 22 |
-
model="gpt-4o",
|
| 23 |
-
messages=[
|
| 24 |
-
{"role": "system",
|
| 25 |
-
"content": "You are a helpful assistant.", },
|
| 26 |
-
{"role": "user",
|
| 27 |
-
"content": "你是一位专业的民族服饰搭配大师,你需要充分了解中华民族的所有民族服饰的相关知识,包括不同民族服饰适合什么样的人群等。"
|
| 28 |
-
"以下是用户分析与三套服饰描述,请据此给出穿搭建议,要求以三段提示词为主要建议参考" + analyse + prompts,
|
| 29 |
-
}
|
| 30 |
-
]
|
| 31 |
-
|
| 32 |
-
)
|
| 33 |
-
print(completion.choices[0].message.content)
|
| 34 |
-
return completion.choices[0].message.content
|
|
|
|
| 1 |
+
from suggestion import generate_outfit_advice
|
| 2 |
+
from clothGen import pro_gen
|
| 3 |
+
import os
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
|
| 6 |
+
# os.environ["OPENAI_API_KEY"] = "sk-vtyR3fdgk08jmJ5e3eF6F5Ef663c4a3bAd0166C3549a1a8e"
|
| 7 |
+
# os.environ["OPENAI_BASE_URL"] = "http://15.204.101.64:4000/v1"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def suggest_gene(user_name, height, weight, waist, chest, hip, shoulder_width, leg_length, arm_length, gender,
|
| 11 |
+
body_type, skin_color, style_preference, lifestyle_requirements, special_requirements,
|
| 12 |
+
feedback, user_pic):
|
| 13 |
+
analyse = generate_outfit_advice(user_name, height, weight, waist, chest, hip, shoulder_width, leg_length,
|
| 14 |
+
arm_length, gender, body_type, skin_color, style_preference,
|
| 15 |
+
lifestyle_requirements, special_requirements, feedback, user_pic)
|
| 16 |
+
prompts = ""
|
| 17 |
+
for i in range(1, 4):
|
| 18 |
+
prompts += pro_gen(analyse, gender, i)
|
| 19 |
+
|
| 20 |
+
client = OpenAI()
|
| 21 |
+
completion = client.chat.completions.create(
|
| 22 |
+
model="gpt-4o",
|
| 23 |
+
messages=[
|
| 24 |
+
{"role": "system",
|
| 25 |
+
"content": "You are a helpful assistant.", },
|
| 26 |
+
{"role": "user",
|
| 27 |
+
"content": "你是一位专业的民族服饰搭配大师,你需要充分了解中华民族的所有民族服饰的相关知识,包括不同民族服饰适合什么样的人群等。"
|
| 28 |
+
"以下是用户分析与三套服饰描述,请据此给出穿搭建议,要求以三段提示词为主要建议参考" + analyse + prompts,
|
| 29 |
+
}
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
)
|
| 33 |
+
print(completion.choices[0].message.content)
|
| 34 |
+
return completion.choices[0].message.content
|