from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration, T5TokenizerFast, TFT5ForConditionalGeneration, FlaxT5ForConditionalGeneration import evaluate import torch import torch.nn as nn import pandas as pd import gradio as gr import requests Q_LEN = 256 model_name = 'PRAli22/t5-base-question-answering-system' tokenizer = T5TokenizerFast.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) def predict_answer(context, question, ref_answer=None): inputs = tokenizer(question, context, max_length=Q_LEN, padding="max_length", truncation=True, add_special_tokens=True) input_ids = torch.tensor(inputs["input_ids"], dtype=torch.long).unsqueeze(0) attention_mask = torch.tensor(inputs["attention_mask"], dtype=torch.long).unsqueeze(0) outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask) predicted_answer = tokenizer.decode(outputs.flatten(), skip_special_tokens=True) if ref_answer: # Load the Bleu metric bleu = evaluate.load("google_bleu") score = bleu.compute(predictions=[predicted_answer], references=[ref_answer]) print("Context: \n", context) print("\n") print("Question: \n", question) return { "Reference Answer: ": ref_answer, "Predicted Answer: ": predicted_answer, "BLEU Score: ": score } else: return predicted_answer css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' demo = gr.Interface( fn=predict_answer, inputs=[ gr.Textbox(label="text", placeholder="Enter the text "), gr.Textbox(label="question", placeholder="Enter the question") ], outputs=gr.Textbox(label="answer"), title="Question Answering System", description= "This is Question Answering System, it takes a text and question in English as inputs and returns it's answer", css = css_code ) demo.launch()