Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
from torch.utils.data import Dataset, DataLoader
|
7 |
+
from datasets import load_dataset
|
8 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
9 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
10 |
+
from datasets.dataset_dict import DatasetDict
|
11 |
+
from transformers import AdamW, T5ForConditionalGeneration, T5TokenizerFast
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
import warnings
|
14 |
+
warnings.simplefilter('ignore')
|
15 |
+
|
16 |
+
from models.summarizer import SummarizerModel
|
17 |
+
from transformers import AutoTokenizer
|
18 |
+
MODEL_NAME = 'Salesforce/codet5-base-multi-sum'
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
20 |
+
model = SummarizerModel(MODEL_NAME)
|
21 |
+
|
22 |
+
def summarize(text: str,
|
23 |
+
tokenizer = tokenizer,
|
24 |
+
trained_model = model):
|
25 |
+
"""
|
26 |
+
Summarizes a given code in text format.
|
27 |
+
Args:
|
28 |
+
text: The code in string format that needs to be summarized.
|
29 |
+
tokenizer: The tokeniszer used in the trained T5 model.
|
30 |
+
trained_model: A SummarizerModel fine-tuned instance of
|
31 |
+
T5 model family.
|
32 |
+
"""
|
33 |
+
text_encoding = tokenizer.encode_plus(
|
34 |
+
text,
|
35 |
+
padding = 'max_length',
|
36 |
+
max_length = 512,
|
37 |
+
add_special_tokens = True,
|
38 |
+
return_attention_mask = True,
|
39 |
+
truncation = True,
|
40 |
+
return_tensors = 'pt'
|
41 |
+
)
|
42 |
+
generated_ids = trained_model.model.generate(
|
43 |
+
input_ids = text_encoding['input_ids'],
|
44 |
+
attention_mask = text_encoding['attention_mask'],
|
45 |
+
max_length = 150,
|
46 |
+
num_beams = 2,
|
47 |
+
repetition_penalty = 2.5,
|
48 |
+
length_penalty = 1.0,
|
49 |
+
early_stopping = True
|
50 |
+
)
|
51 |
+
preds = [tokenizer.decode(gen_id, skip_special_tokens = True,
|
52 |
+
clean_up_tokenization_spaces=True)
|
53 |
+
for gen_id in generated_ids]
|
54 |
+
return "".join(preds)
|
55 |
+
|
56 |
+
outputs = gr.outputs.Textbox()
|
57 |
+
iface = gr.Interface(fn=summarize,
|
58 |
+
inputs=['text'],
|
59 |
+
outputs=outputs,
|
60 |
+
description="This is the summarization")
|
61 |
+
iface.launch()
|